Eucalyptus globulus is grown extensively in plantations outside its native range in Australia. Concerns have been raised that the species may pose a genetic risk to native eucalypt species through hybridisation and introgression. Methods for identifying hybrids are needed to enable assessment and management of this genetic risk. This paper assesses the efficiency of a Bayesian approach for identifying hybrids between the plantation species E. globulus and E. nitens and four at-risk native eucalypts. Range-wide DNA samples of E. camaldulensis, E. cypellocarpa, E. globulus, E. nitens, E. ovata and E. viminalis, and pedigreed and putative hybrids (n = 606), were genotyped with 10 microsatellite loci. Using a two-way simulation analysis (two species in the model at a time), the accuracy of identification was 98% for first and 93% for second generation hybrids. However, the accuracy of identifying simulated backcross hybrids was lower (74%). A six-way analysis (all species in the model together) showed that as the number of species increases the accuracy of hybrid identification decreases. Despite some difficulties identifying backcrosses, the two-way Bayesian modelling approach was highly effective at identifying , which, in the context of E. globulus plantations, are the primary management concern. 1. Introduction Plants are well known for their propensity to hybridise [1, 2], and the role of hybridisation in animal systems is receiving growing attention [3, 4]. Natural hybridisation has been widely documented in plants [1], with hybrid zones often being used to investigate the mechanisms that underlie speciation [5–7]. These studies have demonstrated that barriers to hybridisation that evolve in allopatry are often incomplete, and hybridisation and introgression are still possible when species secondarily come into contact [5, 7]. Two consequences of human development have been the fragmentation of natural plant populations and the widespread movement of plant species around the world [8]. In many situations this has resulted in exotic species coming into contact with cross-compatible indigenous species, leading to human mediated exotic hybridisation [9–11]. This exotic hybridisation and potential for subsequent introgression may threaten the genetic integrity of native species [10, 11]. Given the genetic risk posed by exotic hybridisation, methods for detecting hybrid progeny are needed to enable quantification and management of the issue [11]. In some situations first generation ( ) hybrids can be detected based on intermediate morphology, but in
References
[1]
L. H. Rieseberg and S. E. Carney, “Plant hybridization,” New Phytologist, vol. 140, no. 4, pp. 599–624, 1998.
[2]
D. A. Levin, “The nature of plant species,” Science, vol. 204, no. 4391, pp. 380–384, 1979.
[3]
K. Schwenk, N. Brede, and B. Streit, “Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals,” Philosophical Transactions of the Royal Society B, vol. 363, no. 1505, pp. 2805–2811, 2008.
[4]
E. Randi, “Detecting hybridization between wild species and their domesticated relatives,” Molecular Ecology, vol. 17, no. 1, pp. 285–293, 2008.
[5]
C. Lexer, J. A. Joseph, M. van Loo et al., “Genomic admixture analysis in European Populus spp. reveals unexpected patterns of reproductive isolation and mating,” Genetics, vol. 186, no. 2, pp. 699–712, 2010.
[6]
L. H. Rieseberg, O. Raymond, D. M. Rosenthal et al., “Major ecological transitions in wild sunflowers facilitated by hybridization,” Science, vol. 301, no. 5637, pp. 1211–1216, 2003.
[7]
L. H. Rieseberg, J. Whitton, and K. Gardner, “Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species,” Genetics, vol. 152, no. 2, pp. 713–727, 1999.
[8]
R. N. Mack and W. M. Lonsdale, “Humans as global plant dispersers: getting more than we bargained for: current introductions of species for aesthetic purposes present the largest single challenge for predicting which plant immigrants will become future pests,” BioScience, vol. 51, no. 2, pp. 95–102, 2001.
[9]
M. Byrne and L. Stone, “The need for 'duty of care' when introducing new crops for sustainable agriculture,” Current Opinion in Environmental Sustainability, vol. 3, no. 1-2, pp. 50–54, 2011.
[10]
M. Byrne, L. Stone, and M. A. Millar, “Assessing genetic risk in revegetation,” Journal of Applied Ecology, vol. 48, no. 6, pp. 1365–1373, 2011.
[11]
L. Laikre, M. K. Schwartz, R. S. Waples, and N. Ryman, “Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals,” Trends in Ecology and Evolution, vol. 25, no. 9, pp. 520–529, 2010.
[12]
Euclid, EUCLID Eucalypts of Australia, CD, 3rd edition, 2006.
[13]
D. Nicolle, Native Eucalypts of South Australia, Lane Print & Post, Adelaide, Australia, 2013.
[14]
L. H. Rieseberg and N. C. Ellstrand, “What can molecular and morphological markers tell us about plant hybridization?” Critical Reviews in Plant Sciences, vol. 12, pp. 213–241, 1993.
[15]
K. Elo, S. Ivanoff, J. A. Vuorinen, and J. Piironen, “Inheritance of RAPD markers and detection of interspecific hybridization with brown trout and Atlantic salmon,” Aquaculture, vol. 152, no. 1–4, pp. 55–65, 1997.
[16]
E. C. Anderson and E. A. Thompson, “A model-based method for identifying species hybrids using multilocus genetic data,” Genetics, vol. 160, no. 3, pp. 1217–1229, 2002.
[17]
J. K. Pritchard, M. Stephens, and P. Donnelly, “Inference of population structure using multilocus genotype data,” Genetics, vol. 155, no. 2, pp. 945–959, 2000.
[18]
G. M. Hewitt, “Speciation, hybrid zones and phylogeography—or seeing genes in space and time,” Molecular Ecology, vol. 10, no. 3, pp. 537–549, 2001.
[19]
A. D'Hont, P. S. Rao, P. Feldmann et al., “Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum x Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation,” Theoretical and Applied Genetics, vol. 91, no. 2, pp. 320–326, 1995.
[20]
D. D. Heath, P. D. Rawson, and T. J. Hilbish, “PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 52, no. 12, pp. 2621–2627, 1995.
[21]
W. J. Boecklen and D. J. Howard, “Genetic analysis of hybrid zones: numbers of markers and power of resolution,” Ecology, vol. 78, no. 8, pp. 2611–2616, 1997.
[22]
M. A. Beaumont and B. Rannala, “The bayesian revolution in genetics,” Nature Reviews Genetics, vol. 5, no. 4, pp. 251–261, 2004.
[23]
V. Mu?oz-Fuentes, C. Vilà, A. J. Green, J. J. Negro, and M. D. Sorenson, “Hybridization between white-headed ducks and introduced ruddy ducks in Spain,” Molecular Ecology, vol. 16, no. 3, pp. 629–638, 2007.
[24]
C. Burgarella, Z. Lorenzo, R. Jabbour-Zahab et al., “Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex),” Heredity, vol. 102, no. 5, pp. 442–452, 2009.
[25]
J. R. Adams, C. Lucash, L. Schutte, and L. P. Waits, “Locating hybrid individuals in the red wolf (Canis rufus) experimental population area using a spatially targeted sampling strategy and faecal DNA genotyping,” Molecular Ecology, vol. 16, no. 9, pp. 1823–1834, 2007.
[26]
M. Barilani, A. Sfougaris, A. Giannakopoulos, N. Mucci, C. Tabarroni, and E. Randi, “Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes,” Conservation Genetics, vol. 8, no. 2, pp. 343–354, 2007.
[27]
N. Sanz, R. M. Araguas, R. Fernández, M. Vera, and J.-L. García-Marín, “Efficiency of markers and methods for detecting hybrids and introgression in stocked populations,” Conservation Genetics, vol. 10, no. 1, pp. 225–236, 2009.
[28]
M. Valbuena-Caraba?a, S. C. González-Martínez, O. J. Hardy, and L. Gil, “Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization,” Molecular Ecology, vol. 16, no. 6, pp. 1207–1219, 2007.
[29]
S. L. Thompson, M. Lamothe, P. G. Meirmans, P. Périnet, and N. Isabel, “Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars,” Molecular Ecology, vol. 19, no. 1, pp. 132–145, 2010.
[30]
M. Gavran and M. Parsons, Australian Plantation Statistics 2011, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, Australia, 2011.
[31]
R. C. Barbour, Y. Otahal, R. E. Vaillancourt, and B. M. Potts, “Assessing the risk of pollen-mediated gene flow from exotic Eucalyptus globulus plantations into native eucalypt populations of Australia,” Biological Conservation, vol. 141, no. 4, pp. 896–907, 2008.
[32]
B. M. Potts, R. C. Barbour, A. B. Hingston, and R. E. Vaillancourt, “Turner review no. 6: Genetic pollution of native eucalypt gene pools—identifying the risks,” Australian Journal of Botany, vol. 51, no. 1, pp. 1–25, 2003.
[33]
A. R. Griffin, I. P. Burgess, and L. Wolf, “Patterns of natural and manipulated hybridization in the genus Eucalyptus L'Herit.: a review,” Australian Journal of Botany, vol. 36, pp. 41–66, 1988.
[34]
B. M. Potts and J. B. Reid, “Analysis of a hybrid swarm between Eucalyptus risdonii Hook. f. and E. amygdalina Labill,” Australian Journal of Botany, vol. 33, no. 5, pp. 543–562, 1985.
[35]
R. C. Barbour, B. M. Potts, and R. E. Vaillancourt, “Gene flow between introduced and native Eucalyptus species: morphological analysis of tri-species and backcross hybrids involving E. nitens,” Silvae Genetica, vol. 56, no. 3-4, pp. 127–133, 2007.
[36]
M. Abasolo, D. J. Lee, and M. Shepherd, “Identification of intersectional Corymbia hybrids based on seedling morphology improves with parental divergence,” Forest Ecology and Management, vol. 279, pp. 189–202, 2012.
[37]
P. A. Butcher, M. W. McDonald, and J. C. Bell, “Congruence between environmental parameters, morphology and genetic structure in Australia's most widely distributed eucalypt, Eucalyptus camaldulensis,” Tree Genetics & Genomes, vol. 5, no. 1, pp. 189–210, 2009.
[38]
J. S. Freeman, H. D. Jackson, D. A. Steane et al., “Chloroplast DNA phylogeography of Eucalyptus globulus,” Australian Journal of Botany, vol. 49, no. 5, pp. 585–596, 2001.
[39]
D. A. Steane, N. Conod, R. C. Jones, R. E. Vaillancourt, and B. M. Potts, “A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits,” Tree Genetics & Genomes, vol. 2, no. 1, pp. 30–38, 2006.
[40]
S. A. Foster, G. E. McKinnon, D. A. Steane, B. M. Potts, and R. E. Vaillancourt, “Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus,” New Phytologist, vol. 175, no. 2, pp. 370–380, 2007.
[41]
C. J. Hudson, Eucalyptus Genomics: Linkage Mapping, QTL Analysis and Population Genomic Studies, PhD Thesis University of Tasmania, 2012.
[42]
J. R. Humphreys, J. M. O'Reilly-Wapstra, J. L. Harbard et al., “Discrimination between seedlings of Eucalyptus globulus, E. nitens and their F1 hybrid using near-infrared reflectance spectroscopy and foliar oil content,” Silvae Genetica, vol. 57, no. 4-5, pp. 262–269, 2008.
[43]
J. Marthick, The phylogeography of two eucalypts [honours thesis], School of Plant Science, University of Tasmania, 2005.
[44]
J. Costa e Silva, B. M. Potts, and P. Tilyard, “Epistasis causes outbreeding depression in Eucalypt hybrids,” Tree Genetics & Genomes, vol. 8, no. 2, pp. 249–265, 2012.
[45]
J. M. O'Reilly-Wapstra, J. S. Freeman, R. Barbour, et al., “Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species,” Tree Genetics & Genomes, vol. 9, no. 4, pp. 943–959, 2013.
[46]
J. B. Kirkpatrick, D. Simmons, and R. F. Parsons, “The relationship of some populations involving Eucalyptus cypellocarpa and E. globulus to the problem of phantom hybrids,” New Phytologist, vol. 72, no. 4, pp. 867–876, 1973.
[47]
R. Parsons and J. Kirkpatrick, “Possible phantom hybrids in Eucalyptus,” New Phytologist, vol. 71, no. 6, pp. 1213–1219, 1972.
[48]
J. J. Doyle and J. L. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, vol. 12, no. 1, pp. 13–15, 1990.
[49]
G. E. Mckinnon, R. E. Vaillancourt, D. A. Steane, and B. M. Potts, “The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool of Eucalyptus globulus,” Molecular Ecology, vol. 13, no. 12, pp. 3751–3762, 2004.
[50]
D. A. Steane, R. E. Vaillancourt, J. Russell, W. Powell, D. Marshall, and B. M. Potts, “Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae),” Silvae Genetica, vol. 50, no. 2, pp. 89–91, 2001.
[51]
R. P. V. Brondani, C. Brondani, R. Tarchini, and D. Grattapaglia, “Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla,” Theoretical and Applied Genetics, vol. 97, no. 5-6, pp. 816–827, 1998.
[52]
R. Brondani, C. Brondani, and D. Grattapaglia, “Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers,” Molecular Genetics and Genomics, vol. 267, no. 3, pp. 338–347, 2002.
[53]
J. A. Bloomfield, P. Nevill, B. M. Potts, R. E. Vaillancourt, and D. A. Steane, “Molecular genetic variation in a widespread forest tree species Eucalyptus obliqua (Myrtaceae) on the island of Tasmania,” Australian Journal of Botany, vol. 59, no. 3, pp. 226–237, 2011.
[54]
F. Rousset, “GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux,” Molecular Ecology Resources, vol. 8, no. 1, pp. 103–106, 2008.
[55]
M. Raymond and F. Rousset, “GENEPOP (version 1. 2): population genetics software for exact tests and ecumenicism,” Journal of Heredity, vol. 86, no. 3, pp. 248–249, 1995.
[56]
R. Peakall and P. E. Smouse, “GenAlEx 6. 5: genetic analysis in Excel. Population genetic software for teaching and research-an update,” Bioinformatics, vol. 28, no. 19, pp. 2537–2539, 2012.
[57]
D. Earl, “STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method,” Conservation Genetics Resources, vol. 4, no. 2, pp. 359–361, 2012.
[58]
G. Evanno, S. Regnaut, and J. Goudet, “Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study,” Molecular Ecology, vol. 14, no. 8, pp. 2611–2620, 2005.
[59]
E. E. Nielsen, L. A. Bach, and P. Kotlicki, “HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples,” Molecular Ecology Notes, vol. 6, no. 4, pp. 971–973, 2006.
[60]
M. Jakobsson and N. A. Rosenberg, “CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure,” Bioinformatics, vol. 23, no. 14, pp. 1801–1806, 2007.
[61]
N. A. Rosenberg, “DISTRUCT: a program for the graphical display of population structure,” Molecular Ecology Notes, vol. 4, no. 1, pp. 137–138, 2004.
[62]
A. L. Curtu, O. Gailing, and R. Finkeldey, “Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community,” BMC Evolutionary Biology, vol. 7, no. 1, article 218, 2007.
[63]
R. C. Jones, D. S. Steane, M. Lavery, et al., “Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex,” Ecology and Evolution, vol. 3, no. 1, pp. 1–17, 2012.
[64]
M. H. McGowen, R. J. E. Wiltshire, B. M. Potts, and R. E. Vaillancourt, “The origin of Eucalyptus vernicosa, a unique shrub eucalypt,” Biological Journal of the Linnean Society, vol. 74, no. 3, pp. 397–405, 2001.
[65]
B. M. Potts and R. J. E. Wiltshire, “Eucalypt genetics and genecology,” in Eucalypt Ecology: Individuals to Ecosystems, J. Williams and J. Woinarski, Eds., Cambridge University Press, Cambridge, UK, 1997.
[66]
M. Byrne, “Phylogeny, diversity and evolution of eucalypts,” in Plant Genome: Biodiversity and Evolution, A. S. A. Sharma, Ed., vol. 1, part E, Phanerogams-Angiosperm, pp. 303–346, Science Publishers Enfield, 2008.
[67]
L. Jost, “GST and its relatives do not measure differentiation,” Molecular Ecology, vol. 17, no. 18, pp. 4015–4026, 2008.
[68]
R. Heller and H. R. Siegismund, “Relationship between three measures of genetic differentiation GST, DEST and G'ST: how wrong have we been?” Molecular Ecology, vol. 18, no. 10, pp. 2080–2083, 2009.
[69]
P. G. Meirmans, “Using the AMOVA framework to estimate a standardized genetic differentiation measure,” Evolution, vol. 60, no. 11, pp. 2399–2402, 2006.
[70]
P. G. Meirmans and P. W. Hedrick, “Assessing population structure: FST and related measures,” Molecular Ecology Resources, vol. 11, no. 1, pp. 5–18, 2011.
[71]
J.-P. V?h? and C. R. Primmer, “Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci,” Molecular Ecology, vol. 15, no. 1, pp. 63–72, 2006.
[72]
O. Lepais, R. J. Petit, E. Guichoux et al., “Species relative abundance and direction of introgression in oaks,” Molecular Ecology, vol. 18, no. 10, pp. 2228–2242, 2009.
[73]
M. Barilani, A. Bernard-Laurent, N. Mucci et al., “Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations,” Biological Conservation, vol. 137, no. 1, pp. 57–69, 2007.
[74]
B. L. Greaves, N. M. G. Borralho, and C. A. Raymond, “Early selection in eucalypt breeding in Australia—optimum selection age to minimise the total cost of kraft pulp production,” New Forests, vol. 25, no. 3, pp. 201–210, 2003.
[75]
D. A. Steane, D. Nicolle, C. P. Sansaloni et al., “Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping,” Molecular Phylogenetics and Evolution, vol. 59, no. 1, pp. 206–224, 2011.
[76]
C. P. Sansaloni, C. D. Petroli, J. Carling et al., “A high-density Diversity Arrays Technology (DArT) microarray for genome-wide genotyping in Eucalyptus,” Plant Methods, vol. 6, no. 1, article 16, 2010.
[77]
S. Bouchet, D. Pot, M. Deu et al., “Genetic structure, linkage disequilibrium and signature of selection in sorghum: lessons from physically anchored DArT markers,” PLoS ONE, vol. 7, no. 3, Article ID e33470, 2012.
[78]
J. C. Avise, Molecular Markers, Natural History, and Evolution, Sinauer Associates, Sunderland, Mass, USA, 2nd edition, 2004.
[79]
R. C. Barbour, B. M. Potts, and R. E. Vaillancourt, “Gene flow between introduced and native Eucalyptus species: exotic hybrids are establishing in the wild,” Australian Journal of Botany, vol. 51, no. 4, pp. 429–439, 2003.
[80]
J. Ortego and R. Bonal, “Natural hybridisation between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers,” Plant Biology, vol. 12, no. 1, pp. 234–238, 2010.
[81]
S. Muranishi, I. Tamaki, S. Setsuko, et al., “Asymmetric introgression between Magnolia stellata and M. salicifolia at a site where the two species grow sympatrically,” Tree Genetics & Genomes, vol. 9, no. 4, pp. 1005–1015, 2013.
[82]
C. Cullingham, J. E. K. Cooke, S. Dang, and D. W. Coltman, “A species-diagnostic SNP panel for discriminating lodgepole pine, jack pine, and their interspecific hybrids,” Tree Genetics & Genomes, vol. 9, no. 4, pp. 1119–1127, 2013.
[83]
R. C. Barbour, B. M. Potts, and R. E. Vaillancourt, “Gene flow between introduced and native Eucalyptus species: exotic hybrids are establishing in the wild,” Australian Journal of Botany, vol. 51, no. 4, pp. 429–439, 2003.
[84]
R. C. Barbour, B. M. Potts, and R. E. Vaillancourt, “Pollen dispersal from exotic eucalypt plantations,” Conservation Genetics, vol. 6, no. 2, pp. 253–257, 2005.
[85]
B. M. Potts and H. S. Dungey, “Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists,” New Forests, vol. 27, no. 1, pp. 115–138, 2004.
[86]
S. D. Hopper, “Progeny trials in an introgressive hybrid population of Anigozanthos Labill. (Haemodoraceae),” Australian Journal of Botany, vol. 26, pp. 309–317, 1978.
[87]
R. Watson, P. Ladiges, and A. Griffin, “Variation in Eucalyptus cypellocarpa L. Johnson in Victoria, and a new taxon from the Grampian Ranges and Anglesea,” Brunonia, p. 10, 1987.
[88]
J. Kirkpatrick, D. Simmons, and R. Parsons, “The relationship of some populations involvingEucalyptus cypellocarpa and E. globulus to the problem of phantom hybrids,” New Phytologist, vol. 72, no. 4, pp. 867–876, 1973.