The study was done to assess the opportunity costs of REDD+ to the communities of Mufindi District which is located in the Southern Highlands of Tanzania. The specific objectives were, to identify and assess the economic value of alternative land uses, the aboveground carbon stock of Idewa Forest Reserve (IFR), and the profitability of each land use as compared to REDD+ incentives. Data were collected using questionnaire survey, key informant interview, and forest inventory and data were analyzed using the Excel programme. Results showed that the main land uses were agriculture and tree planting with economic values of $2958.52 and $3272.94 per ha per year, respectively. The total aboveground carbon was 39.23?t/ha (143.97/ha). The opportunity costs of REDD+ was varying depending on the price per ton of carbon. The opportunity costs of REDD+ will be profitable if the price per tCO2e will be at least $23. It can therefore be concluded that there is no general unit price per ton of carbon dioxide equivalent (tCO2e), as it depends on REDD+ opportunity cost when compared with alternative land uses within a particular place. Therefore we recommend opportunity costs of REDD+ to communities be used to guide decision making on unit prices of carbon. 1. Introduction Reducing emissions from deforestation and forest degradation (REDD) was recognized officially at the 2007 CoP13 in Bali. In 2005, discussions focused only on “reducing emissions from deforestation” (RED). As it became clear that forest degradation in some countries was an even bigger problem than deforestation, “avoided degradation” (the second D) was officially endorsed at the 2007 COP13 in Bali and RED morphed into “reducing emissions from deforestation and degradation” (REDD). Subsequently, it was further recognized that there could be climate benefits not only from avoiding negative changes (deforestation, degradation) but also from enhancing positive changes, such as conserving and restoring forests [1]. This can be referred to as “removals” or “negative emissions.” It was expressed as the “+,” and “reducing emissions from deforestation and forest degradation in developing countries (REDD); and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries” (REDD+) became official language at the 2008 COP14 in Poznan [2]. A core idea underlying REDD+ is to make performance-based payments, that is, to pay forest owners and users to reduce emissions and increase carbon sequestration. Regardless of whether or not individuals or communities
References
[1]
A. Angelsen and S. Wertz-Kanounnikoff, “What are the key design issues for REDD and the criteria for assessing options?” in Moving Ahead with REDD: Issues, Options and Implications, A. Angelsen, Ed., CIFOR, Bogor, Indonesia, 2008.
[2]
A. Angelsen, Realising REDD+: National Strategy and Policy Options, CIFOR, Bogor, Indonesia, 2009.
[3]
J. Gurung, K. Giri, A. B. Setjowati, and E. Lebow, “Gender and REDD+: An Asia Regional Analysis,” 2010.
[4]
World Bank Institute (WBI), “New Training Manual and Workshops. Estimating the Opportunity Costs of REDD+,” 2011, http://wbi.worldbank.org/wbi/.
[5]
FoEI (Friends of the Earth International), REDD Myths: A Critical Review of Proposed Mechanisms to Reduce Emissions from Deforestation and Degradation in Developing Countries, FoEI, Amsterdam, The Netherlands, 2008.
[6]
URT, National Forest Policy, Ministry of Natural Resources and Tourism, Dar Es Salaam, Tanzania, 1998.
[7]
URT, The Forest Act No. 14. United Republic of Tanzania, Ministry of Natural Resources and Tourism, Dar es Salaam, Tanzania, 2002.
[8]
B. Swallow, M. van Noordwijk, S. Dewi et al., “Opportunities for Avoided Deforestation with Sustainable Benefits,” An Interim Report by the ASB Partnership For the Tropical Forest Margins, ASB Partnership for the Tropical Forest Margins, Nairobi, Kenya, The Forests Dialogue. 2010. TFD Review: Investing in REDD-plus, Consensus Recommendations on Frameworks for the Financing and Implementation of REDD-plus, TFD Publication Number 1, The Forests Dialogue, New Haven, 2007.
[9]
W. D. Nordhaus, “Rolling the “DICE”: an optimal transition path for controlling greenhouse gases,” Resource and Energy Economics, vol. 15, no. 1, pp. 27–50, 1993.
[10]
S. Fankhauser, Valuing Climate Change, Earthscan, London, UK, 1995.
[11]
R. A. Sedjo and E. Ley, “The potential role of large-scale forestry in Argentina,” in Climate Change Mitigation and European Land Use Policies, W. N. Adger, D. Pettenella, and M. Whitby, Eds., pp. 255–268, CAB International, Wallingford, UK, 1997.
[12]
J. R. Healey, C. Price, and J. Tay, “The cost of carbon retention by reduced impact logging,” Forest Ecology and Management, vol. 139, no. 1–3, pp. 237–255, 2000.
[13]
R. S. J. Tol, “The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties,” Energy Policy, vol. 33, no. 16, pp. 2064–2074, 2005.
[14]
A. Jakob, J. L. Craig, and G. Fisher, “Transport cost analysis: a case study of the total costs of private and public transport in Auckland,” Environmental Science and Policy, vol. 9, no. 1, pp. 55–66, 2006.
[15]
N. D. William, “The “Stern Review” on the Economics of Climate Change,” Working Paper 12741, The National Bureau of Economic Research, 2006, http://booksily.net/pdf/stern-review-on-theeconomics-of-climate-change.
[16]
Bloomberg News, “Price difference between EU and UN carbon credits offers huge profit opportunity,” International Herald Tribune, 2007, http://topics.nytimes.com/top/opinion/series/turning_points_2014/.
[17]
M. Maibach, C. Schreyer, D. Sutter et al., “Handbook on estimation of external cost in transport sector,” CE Delft, 2008, http://ec.europa.eu/transport/sustainable/doc/2008costshandbook.pdf.
[18]
T. A. Litman, “Climate change emission valuation for transportation economic analysis,” The Report, Victoria Transport Policy Institute, 2009, http://www.vtpi.org/ghg_valuation.pdf.
[19]
D. K. Bailey, Methods of Social Research, Macmillan Publisher, London, UK, 1994.
[20]
P. K. T. Munishi and T. H. Shear, “Carbon storage in afromontane rain forests of the eastern arc mountains of tanzania: Their net contribution to atmospheric carbon,” Journal of Tropical Forest Science, vol. 16, no. 1, pp. 78–93, 2004.
[21]
P. K. T. Munishi, S. Mringi, D. D. Shirima, and S. K. Linda, “The role of the Miombo Woodlands of the Southern Highlands of Tanzania as carbon sinks,” Journal of Ecology and the Natural Environment, vol. 2, no. 12, pp. 261–269, 2010.
[22]
R. E. Malimbwi, “Forest extent and ownership in Tanzania,” A Consultancy Report Requested By Tanzania Conservation and Management Project (TCMP), 2001.
[23]
D. White and P. Minang, “Estimating the opportunity costs of REDD+. A training manual,” 2011, http://www.forestcarbonpartnership.org/.
[24]
R. Mnenwa and E. Maliti, “A comparative analysis of poverty incidence in farming systems of Tanzania,” Spacial Paper 10/4, REPOA, Dar es Salaam, Tanzania, 2010.
[25]
J. A. Ngailo, F. B. S. Kaihura, F. Baijukya, and B. J. Kiwambo, “Land use changes and their impact on agricultural biodiversity in Arumeru, Tanzania,” 2001.
[26]
S. Brown, A. J. R. Gillespie, and A. E. Lugo, “Biomass of tropical forests of South and Southeast Asia,” Canadian Journal of Forest Research, vol. 21, no. 1, pp. 111–117, 1991.
[27]
MNRT and UN-REDD+, Estimating cost Elements of REDD+ in Tanzania, 2012.
[28]
I. Bond, M. Grieg-Gran, S. Wertz-Kanounnikoff, P. Hazlewood, S. Wunder, and A. Angelsen, Incentives to Sustain Forest Ecosystem Services, International Institute for Environment and Development (IIED), London, UK, A Review and Lessons for REDD, 2009.
[29]
B. M. Liss, “Development and application of a pilot policy on Payment for Environmental Services (PES) in Da River Basin, Son La Province,” Consultant Report to the Vietnamese-German Forestry Programme, International Consultancy Services, Landsberg/Lech, Germany, 2008.