Black locust (Robinia pseudoacacia L.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57?g?L?1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land. 1. Introduction Summer drought, as observed during extreme events in Central Europe in 2003 [1], is one of the major abiotic stress factors that limit plant growth and have drastic effects on the ecosystem productivity. The ongoing climate change amplifies the interannual climate variability and changes the seasonal distribution of rainfall in Central Europe [2]. Within Central Europe particularly the southern parts of Brandenburg and Poland will be highly vulnerable to climate change and a decrease in summer precipitation is forecasted. Consequently, drought periods during the growth season are to be expected [3]. In this region the reduced soil water availability (SWA), in combination with sandy soils, has led to negative effects on the productivity of the ecosystem [4]. An integrated concept of active species selection and an appropriate management of tree stands could mitigate the effect of the climatic stress to a certain extent. Therefore, it is important to assess the plasticity of the species to drought stress by understanding the plant response in terms of water consumption, growth performance, and production [5]. This is particularly important for short-rotation coppice (SRC) systems, where the primary production is driven mainly by the SWA [6, 7]. Black
References
[1]
P. Ciais, M. Reichstein, N. Viovy et al., “Europe-wide reduction in primary productivity caused by the heat and drought in 2003,” Nature, vol. 437, no. 7058, pp. 529–533, 2005.
[2]
U. Cubasch and C. Kadow, “Global climate change and aspects of regional climate change in the Berlin-Brandenburg region,” Erde, vol. 142, no. 1-2, pp. 3–20, 2011.
[3]
N. Schaller, I. Mahlstein, J. Cermak, and R. Knutti, “Analyzing precipitation projections: a comparison of different approaches to climate model evaluation,” Journal of Geophysical Research D: Atmospheres, vol. 116, no. 10, Article ID D10118, pp. 1984–2012, 2011.
[4]
A. Holsten, T. Vetter, K. Vohland, and V. Krysanova, “Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas,” Ecological Modelling, vol. 220, no. 17, pp. 2076–2087, 2009.
[5]
R. Monclus, E. Dreyer, M. Villar et al., “Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra,” New Phytologist, vol. 169, no. 4, pp. 765–777, 2006.
[6]
E. Sevigne, C. M. Gasol, F. Brun et al., “Water and energy consumption of Populus spp. bioenergy systems: a case study in Southern Europe,” Renewable and Sustainable Energy Reviews, vol. 15, no. 2, pp. 1133–1140, 2011.
[7]
R. S. Zalesny, D. M. Donner, D. R. Coyle, and W. L. Headlee, “An approach for siting poplar energy production systems to increase productivity and associated ecosystem services,” Forest Ecology and Management, vol. 284, pp. 45–58, 2012.
[8]
H. Grünewald, C. B?hm, A. Quinkenstein, P. Grundmann, J. Eberts, and G. von Wühlisch, “Robinia pseudoacacia L.: a lesser known tree species for biomass production,” Bioenergy Research, vol. 2, no. 3, pp. 123–133, 2009.
[9]
F. Xu, W. Guo, W. Xu, Y. Wei, and R. Wang, “Leaf morphology correlates with water and light availability: what consequences for simple and compound leaves,” Progress in Natural Science, vol. 19, no. 12, pp. 1789–1798, 2009.
[10]
M. Veste and W. U. Kriebitzsch, “Influence of drought stress on photosynthesis, transpiration, and growth of juvenile black locust (Robinia pseudoacacia L),” Forstarchiv, vol. 84, no. 2, pp. 35–42, 2013.
[11]
D. Mantovani, M. Veste, A. Badorreck, and D. Freese, “Evaluation of fast growing tree water use under different soil moisture regimes using wick lysimeters,” iForest, vol. 6, pp. 190–200, 2013.
[12]
J. Walter, A. Jentsch, C. Beierkuhnlein, and J. Kreyling, “Ecological stress memory and cross stress tolerance in plants in the face of climate extremes,” Environmental and Experimental Botany, vol. 94, pp. 3–8, 2012.
[13]
H. Lambers, F. S. Chapin III, and T. L. Pons, Plant Physiological Ecology, Springer, New York, NY, USA, 1998.
[14]
S. Leuzinger, G. Zotz, R. Asshoff, and C. K?rner, “Responses of deciduous forest trees to severe drought in Central Europe,” Tree Physiology, vol. 25, no. 6, pp. 641–650, 2005.
[15]
N. Bréda, R. Huc, A. Granier, and E. Dreyer, “Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences,” Annals of Forest Science, vol. 63, no. 6, pp. 625–644, 2006.
[16]
K. J. Bradford and T. C. Hsiao, “Physiological responses to moderate water stress,” in Physiological Plant Ecology, O. L. Lange, P. S. Nobel, B. Osmond, and H. Ziegler, Eds., vol. 2, pp. 263–324, Springer, Berlin, Germany, 1982.
[17]
H. Cochard, L. Coll, X. Le Roux, and T. Améglio, “Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut,” Plant Physiology, vol. 128, no. 1, pp. 282–290, 2002.
[18]
M. T. Tyree and F. W. Ewers, “The hydraulic architecture of trees and other woody plants,” New Phytologist, vol. 119, no. 3, pp. 345–360, 1991.
[19]
H. Cochard, N. Bréda, A. Granier, and G. Aussenac, “Vulnerability to air embolism of three European oak species (Quercus petraea (Matt) Liebl, Q. pubescens Willd, Q. robur L),” Annales des Sciences Forestières, vol. 49, no. 3, pp. 225–233, 1992.
[20]
J. A. Jarbeau, F. W. Ewers, and S. D. Davis, “The mechanism of water-stress-induced embolism in two species of chaparral shrubs,” Plant, Cell and Environment, vol. 18, no. 2, pp. 189–196, 1995.
[21]
C. Lovisolo and A. Schubert, “Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L,” Journal of Experimental Botany, vol. 49, no. 321, pp. 693–700, 1998.
[22]
M. Pigliucci, Phenotypic Plasticity: Beyond Nature and Nurture, John Hopkins University Press, Baltimore, Md, USA, 2001.
[23]
G. S. Newman, M. A. Arthur, and R. N. Muller, “Above- and belowground net primary production in a temperate mixed deciduous forest,” Ecosystems, vol. 9, no. 3, pp. 317–329, 2006.
[24]
M. Veste, M. Staudinger, and M. Küppers, “Spatial and temporal variability of soil water in drylands: plant water potential as a diagnostic tool,” Forestry Studies in China, vol. 10, no. 2, pp. 74–80, 2008.
[25]
N. Z. Saliendra, J. S. Sperry, and J. P. Comstock, “Influence of leaf water status on stomatal response to humidity, hydraulic conductance, and soil drought in Betula occidentalis,” Planta, vol. 196, no. 2, pp. 357–366, 1995.
[26]
L. Donovan, M. Linton, and J. Richards, “Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions,” Oecologia, vol. 129, no. 3, pp. 328–335, 2001.
[27]
A. Gallé, P. Haldimann, and U. Feller, “Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery,” New Phytologist, vol. 174, no. 4, pp. 799–810, 2007.
[28]
M. D. Abrams, “Adaptations and responses to drought in Quercus species of North America,” Tree Physiology, vol. 7, pp. 227–238, 1990.
[29]
F. Xu, W. Guo, R. Wang, W. Xu, N. Du, and Y. Wang, “Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions,” Acta Physiologiae Plantarum, vol. 31, no. 3, pp. 553–563, 2009.
[30]
J. S. Sperry, “Hydraulic constraints on plant gas exchange,” Agricultural and Forest Meteorology, vol. 104, no. 1, pp. 13–23, 2000.
[31]
H. J. Bohnert, “What makes desiccation tolerable?” Genome Biology, vol. 1, no. 2, pp. 15–16, 2000.
[32]
S. Munné-Bosch and L. Alegre, “Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants,” Planta, vol. 210, no. 6, pp. 925–931, 2000.
[33]
D. L. Shumway, K. C. Steiner, and M. D. Abrams, “Effect of drought stress on hydraulic architecture of seedlings from five population of green ash,” Canadian Journal of Botany, vol. 69, pp. 2158–2164, 1991.
[34]
L. Poorter, I. McDonald, A. Alarcón et al., “The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species,” New Phytologist, vol. 185, no. 2, pp. 481–492, 2010.
[35]
W. U. Kriebitzsch and M. Veste, “Bedeutung trockener Sommer für die Photosynthese und Transpiration von verschiedenen Herkünften der Rot-Buche (Fagus sylvatica L.),” Landbauforsch, vol. 62, no. 4, pp. 193–209, 2012.
[36]
R. Tognetti, A. Longobucco, and A. Raschi, “Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy,” New Phytologist, vol. 139, no. 3, pp. 437–447, 1998.
[37]
T. J. A. Bruce, M. C. Matthes, J. A. Napier, and J. A. Pickett, “Stressful “memories” of plants: evidence and possible mechanisms,” Plant Science, vol. 173, no. 6, pp. 603–608, 2007.
[38]
H. S. Grip, S. Halldin, A. Lindroth, and G. Persson, “Evapotranspiration from a willow stand on wetland,” Ecology and Management of Forest Biomass Production Systems, vol. 15, pp. 47–61, 1984.
[39]
A. Lindroth, T. Verwijst, and S. Halldin, “Water-use efficiency of willow: variation with season, humidity and biomass allocation,” Journal of Hydrology, vol. 156, no. 1–4, pp. 1–19, 1994.
[40]
C. Yin, X. Wang, B. Duan, J. Luo, and C. Li, “Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress,” Environmental and Experimental Botany, vol. 53, no. 3, pp. 315–322, 2005.
[41]
Z.-S. Liang, J.-W. Yang, H.-B. Shao, and R.-L. Han, “Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the Loess Plateau,” Colloids and Surfaces B: Biointerfaces, vol. 53, no. 1, pp. 23–28, 2006.