The Effect of Seed Sources Variation and Presowing Treatments on the Seed Germination of Acacia catechu and Elaeocarpus floribundus Species in Bangladesh
The seed germination of seed sources and presowing treatments of Acacia catechu and Elaeocarpus floribundus seeds were conducted in the nursery of Bangladesh Agricultural University. The seeds were collected from matured and healthy trees from four different locations in Bangladesh and treated with six presowing methods. The germination test was conducted in polybags with a mixture of topsoil and cow dung in a ratio of 3?:?1. The results of ANOVA showed no significant differences among seed sources but statistically significant differences among the presowing treatments for both species. Thus the presowing methods affected the germination process of seeds, and then the highest germination success was found to be 91.26% in hot water (80°C for 10?min), treatment in Acacia catechu and the highest germination success (89.81%) of Elaeocarpus floribundus was found in H2SO4 treatment followed by 86.35% and 78.42% in treatments with hot water (100°C for 12?min) and scarification. The study also revealed that the interactions between seed source variation and presowing methods effect significantly differed in seed germination percentages. Therefore, it is concluded that hot water treatment can be suggested on seed germination of both species for developing nurseries and rural Bangladesh. 1. Introduction Seeds provide the most natural resources of plant reproduction, preservation of genetic variability, transportation, and propagation of flora. Though, viable seeds do not germinate even under favorable environmental conditions for many cases; this phenomenon is termed seed dormancy [1]. Several internal factors cause dormancy which includes seed coat, embryo, or inhibitors, which influence the seed germination rate [2]. To overcome these factors, different pretreatment methods have to be adjusted to individual species and seed lots depending on the type of plant species and dormancy. Physical dormancy is caused due to water-resistant seed coat or fruit enclosure which stops imbibition and sometimes also gaseous exchange. It may be overcome either by pretreatment methods of scarification of the seed coat by piercing, nicking, clipping, filing, or burning with the aid of knife, needle, hot wire burner, or abrasion paper [3]; by hot water treatment [4, 5]; or by acid treatment [4]. Acacia catechu Willd. (locally known as Khair), a member of the family Mimosaceae, is a medium sized deciduous tree which grows up to 15?m in height. The brown, beaked seed pods of A. catechu are 50–125?mm long on a short stalk and contain between four and seven seeds, which are dark
References
[1]
L. Taiz and E. Zeiger, Plant Physiology, vol. 10, Sinauer Associates, Sunderland, Mass, USA, 3rd edition, 2002.
[2]
P. K. Agrawal and M. Dadlani, Techniques in Seed Science and Technology, South Asian Publishers, New Delhi, India, 2nd edition, 1995.
[3]
L. A. Catalan and R. E. Macchiavelli, “Improving germination in Prosopis flexuosa D.C. and P. alba Grise B. with hot water treatments and scarification,” Seed Science and Technology, vol. 19, pp. 253–262, 1991.
[4]
B. Kobmoo and A. K. Hellum, “Hot water and acid improve the germination of Cassia siamea Britt. Seeds,” The Embryan, vol. 1, no. 1, pp. 27–33, 1984.
[5]
P. D. Khasa, “Scarification of limba seeds with hot water, bleach and acid,” Tree Planters Note, vol. 43, no. 4, pp. 150–152, 1992.
[6]
N. S. Bisht and S. P. Ahlawat, Seed Technology, State Forestry Research Institute, Government of Arunachal Pradesh, Itanagar, India, 1999.
[7]
K. N. Singh and B. Lal, “Notes on traditional uses of khair (Acacia catechu Willd.) by inhabitants of shivalik range in Western Himalaya,” Ethnobotanical Leaflets, vol. 10, pp. 109–112, 2006.
[8]
T. Chakrabarty and M. Gangopadhyay, “The genus Acacia P. Miller, (Leguminosae: Mimosoideae) in India,” Journal of Economic and Taxonomic Botany, vol. 20, pp. 599–633, 1996.
[9]
K. N. Singh, Variation studies on katha content in relation to different forms of khair (Acacia catechu Willd.) trees [M.S. thesis], Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India, 2000.
[10]
U. V. Singh, S. P. Ahlawat, and N. S. Bisht, Nursery Technique of Local Tree Species II, SFRI Information Bulletin No. 11, State Forest Research Institute, Jabalpur, India, 2003.
[11]
H. B. Joshi, M. A. Rashid, and P. Venkataramany, The Silviculture OfIndian Trees, Controller of Publication, New Delhi, India, 1981.
[12]
M. S. Azad, M. W. Islam, M. A. Matin, and M. A. Bari, “Effect of pre-sowing treatment on seed germination of Albizia lebbeck (L.) Benth,” South Asian Journal of Agriculture, vol. 1, no. 2, pp. 32–34, 2006.
[13]
M. S. Azad, M. A. Matin, M. W. Islam, and M. Z. A. Musa, “Effect of pre-sowing treatment on seed germination of Lohakath (Xylia kerrii Craib & Hutch.),” Khulna University Study, vol. 7, no. 2, pp. 33–36, 2006.
[14]
M. S. Azad, R. K. Biswas, and M. A. Matin, “Seed germination of Albizia procera(Roxb.) Benth. in Bangladesh: a basis for seed source variation and pre sowing treatment effect,” Forestry Study in China, vol. 12, no. 2, pp. 124–130, 2012.
[15]
M. S. Azad, M. R. Manik, M. S. Hasan, and M. A. Matin, “Effect of different pre-sowing treatments on seed germination percentage and growth performance of Acacia auriculiformis,” Journal of Forestry Research, vol. 22, no. 2, pp. 183–188, 2011.
[16]
M. S. Azad, M. T. Rahman, and M. A. Matin, “Seed germination techniques of Phoenix dactylifera: a new experience from Bangladesh,” Frontiers of Agriculture in China, vol. 5, no. 2, pp. 241–246, 2011.
[17]
F. D. Ahamed, S. Das, and M. A. Hossain, “Effect of seed treatment on the germination of rakta kombal seeds,” Bano Biggyan Patrica, vol. 12, no. 1, pp. 62–65, 1983.
[18]
M. A. Matin and M. H. Rashid, “Seed morphology, germination and seedling survival of Albizia trees in the Nursery,” Bangladesh Journal of Forest Science, vol. 21, no. 1, pp. 40–45, 1992.
[19]
M. Ali, S. Akhter, and M. Kamaluddin, “Study on the bearing of hot water treatment on seed germination and seedling growth of Albizia procera benth,” Indian Forester, vol. 123, no. 8, pp. 764–768, 1997.
[20]
B. Koirala, M. K. Hossain, and M. S. Hossain, “Effects of different pre-sowing treatments on Adenanthera pavonia L. seeds and initial seedling development in the nursery,” Malaysian Forester, vol. 63, no. 2, pp. 82–91, 2000.
[21]
B. M. Khan, B. Koirala, and M. K. Hossian, “Effect of different pre-sowing treatments on germination and seedling growth attributes in Ghora Neem (Melia azedarach L.),” Malaysian Forester, vol. 64, no. 1, pp. 14–21, 2001.
[22]
M. Alamgir and M. K. Hossain, “Effect of pre-sowing treatments on Albizia procera (Roxb.) Benth seeds and initials development of seedlings in the nursery,” Journal of Forestry and Environment, vol. 3, pp. 53–60, 2005.
[23]
M. Alamgir and M. K. Hossain, “Effect of pre-sowing treatments on germination and initials seedling development of Albizia saman in the nursery,” Journal of Forestry Research, vol. 16, no. 3, pp. 200–204, 2005.
[24]
M. S. Azad, M. W. Islam, M. A. Matin, and M. A. Bari, “Effect of pre-sowing treatment on seed germination of Albizia lebbeck (L.) Benth,” South Asian Journal Agriculture, vol. 1, no. 2, pp. 32–34, 2006.
[25]
M. S. Azad, M. A. Matin, M. W. Islam, and Z. A. Musa, “Effect of pre-sowing treatment on seed germination of Lohakath (Xylia kerrii Craib & Hutch.),” Khulna University Studies, vol. 7, no. 2, pp. 33–36, 2006.
[26]
M. A. Matin, M. S. Islam, and M. S. Azad, “Seed germination, seedling growth and rooting of branch cuttings of Dalbergia sissoo Roxb,” Khulna University Studies, pp. 83–87, 2006, Proceedings of the 1st Research Cell Conference.
[27]
R. A. Sniezko and H. T. L. Stewart, “Range-wide provenance variation in growth and nutrition of Acacia albida seedlings propagated in Zimbabwe,” Forest Ecology and Management, vol. 27, no. 3-4, pp. 179–197, 1989.
[28]
R. K. Vakshasya, O. P. Rajora, and M. S. Rawat, “Seed and seedling traits of Dalbergia sissoo Roxb.: seed source variation studies among ten sources in India,” Forest Ecology and Management, vol. 48, no. 3-4, pp. 265–275, 1992.
[29]
A. R. Nautiyal, D. C. S. Rawat, and P. Prasad, “Physiological aspects of seed source variation in seed germination of Quercus leucotrichophora A. Camus,” Indian Forester, vol. 126, no. 3, pp. 269–273, 2000.
[30]
G. S. Bhat and P. S. Chauhan, “Provenance variation in seed and seedling traits of Albizzia lebbek Benth,” Journal of Tree Science, vol. 21, pp. 52–57, 2002.
[31]
D. C. Close and S. J. Wilson, “Provenance effects on pre-germination treatments for Eucalyptus regnans and E. delegatensis seed,” Forest Ecology and Management, vol. 170, no. 1–3, pp. 299–305, 2002.
[32]
D. Esen, O. Yildiz, M. Sarginci, and K. Isik, “Effects of different pretreatments on germination of Prunus serotina seed sources,” Journal of Environmental Biology, vol. 28, no. 1, pp. 99–104, 2007.
[33]
H. Shivanna, H. C. Balachandra, and N. L. Suresh, “Source variation in seed and seedling traits of Pongamia pinnata,” Karnataka Journal of Agricultural Science, vol. 20, no. 2, pp. 438–439, 2007.
[34]
J. D. Maguire, “Speed of germination aid in selection and evaluation for seedling emergence and vigor,” Crop Science, vol. 2, no. 2, pp. 176–177, 1962.
[35]
D. B. Duncan, “Multiple ranges and multiple F-tests,” Biometrics, vol. 11, no. 1, pp. 1–42, 1955.
[36]
B. Sajeevukumar, K. Sudhakara, P. K. Ashokan, and K. Gopikumar, “Seed dormancy and germination in Albizia falcataria and Albizia procera,” Journal of Tropical Forest Science, vol. 7, no. 3, pp. 371–382, 1995.
[37]
M. R. Bowen and T. V. Eusebio, Albizia Falcataria. Information on Seed Collection, Handling and Germination Testing, Occasional Technical and Scientific Notes, Seed Series No. 4, Forest Research Centre, Sabah, Malaysia, 1981.
[38]
S. N. Koffa, “Temperature: its effect on the pre-germination of Albizia falcataria,” Canopy International, vol. 9, p. 5, 1983.
[39]
D. Diangana, “Treatment to accelerate germination of Acacia mangium, Albizia falcataria, Calliandra calothyrsus and Leucaena leucocephala,” Nitrogen Fixing Trees Research Report, vol. 3, pp. 2–3, 1985.
[40]
S. Kandya, “Enhancing germination in Cassia siamea seeds,” Journal of Tropical Forest Science, vol. 6, pp. 28–35, 1990.
[41]
M. S. Azad, N. K. Paul, and M. A. Matin, “Do pre-sowing treatments affect seed germination in Albizia richardiana and Lagerstroemia speciosa?” Frontiers of Agriculture in China, vol. 4, no. 2, pp. 181–184, 2010.
[42]
E. Pipinis, E. Milios, P. Smiris, and C. Gioumousidis, “Effect of acid scarification and cold moist stratification on the germination of Cercis siliquastrum L. seeds,” Turkish Journal of Agriculture and Forestry, vol. 35, no. 3, pp. 259–264, 2011.
[43]
J. Ren and L. Tao, “Effects of different pre-sowing seed treatments on germination of 10 Calligonum species,” Forest Ecology and Management, vol. 195, no. 3, pp. 291–300, 2004.
[44]
J. P. Yadav, “Pretreatment of teak seed to enhance germination,” Indian Forester, vol. 11, no. 2, pp. 260–264, 1992.