An investigation to optimize the extraction yield and the radical scavenging activity from the agricultural by-product olive tree wood (Olea europaea L., cultivar Picual) using six different extraction protocols was carried out. Four olive wood samples from different geographical origin, and harvesting time have been used for comparison purposes. Among the fifty olive wood extracts obtained in this study, the most active ones were those prepared with ethyl acetate, either through direct extraction or by successive liquid-liquid partitioning procedures, the main components being the secoiridoids oleuropein and ligustroside. An acid hydrolysis pretreatment of olive wood samples before extractions did not improve the results. In the course of this study, two compounds were isolated from the ethanolic extracts of olive wood collected during the olives’ harvesting season and identified as (7′′R)-7′′-ethoxyoleuropein (1) and (7′′S)-7′′-ethoxyoleuropein (2). 1. Introduction Since agricultural and industrial residues are attractive sources of natural antioxidants, basically due to their null or low value [1–4], different residues and by-products from fruits [5, 6], vegetables [7, 8], or olive oil manufacturing [9] have been screened for the presence of antioxidants. Due to the large amounts of biomass from pruning generated every year (more than 7 million tonnes per year in Spain), olive tree wood constitutes an important agricultural by-product. During the search of natural antioxidants from Olea europaea L. residues and by-products, both solid and liquid residues from olive oil and table olives processing have been studied [2, 10–19]. Our preliminary studies on the radical scavenging activity of olive wood extracts, cultivar Picual, showed that this agricultural by-product could be a source of natural antioxidants [20]. The isolation and radical scavenging activity of the main constituents [21] as well as some minor components present in olive wood extracts have been reported by us [22]. The secoiridoids oleuropein and ligustroside are among the main components. Other compounds present in olive wood are the lignan (+)-cycloolivil, the phenolic alcohol hydroxytyrosol, and several secoiridoids related to oleuropein, such as (7′′S)-7′′-hydroxyoleuropein or oleuropein 3′-O-β-D-glucoside. Moreover, the human platelet antiaggregant properties of two olive wood components, oleuropein and (+)-cycloolivil, have been evaluated [23]. The cultivar Picual was selected for these studies since it is one of the most important Spanish olive varieties for oil extraction,
References
[1]
A. Moure, J. M. Cruz, D. Franco et al., “Natural antioxidants from residual sources,” Food Chemistry, vol. 72, no. 2, pp. 145–171, 2001.
[2]
F. Visioli and C. Galli, “Olives and their production waste products as sources of bioactive compounds,” Current Topics in Nutraceutical Research, vol. 1, no. 1, pp. 85–88, 2003.
[3]
G. Garrote, J. M. Cruz, A. Moure, H. Domínguez, and J. C. Parajó, “Antioxidant activity of byproducts from the hydrolytic processing of selected lignocellulosic materials,” Trends in Food Science and Technology, vol. 15, no. 3-4, pp. 191–200, 2004.
[4]
N. Balasundram, K. Sundram, and S. Samman, “Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses,” Food Chemistry, vol. 99, no. 1, pp. 191–203, 2006.
[5]
R. Carle, P. Keller, A. Schieber et al., “Method for obtaining useful materials from the by-products of fruit and vegetable processing,” WO Patent 2001078859, 2001.
[6]
J. L. Torres, B. Varela, M. T. García et al., “Valorization of grape (Vitis vinifera) byproducts. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content,” Journal of Agricultural and Food Chemistry, vol. 50, no. 26, pp. 7548–7555, 2002.
[7]
W. Peschel, F. Sánchez-Rabaneda, W. Diekmann et al., “An industrial approach in the search of natural antioxidants from vegetable and fruit wastes,” Food Chemistry, vol. 97, no. 1, pp. 137–150, 2006.
[8]
S. Savatovic, G. Cetkovic, J. Canadanovic-Brunet, and S. Djilas, “Tomato waste: a potential source of hydrophilic antioxidants,” International Journal of Food Sciences and Nutrition, vol. 63, no. 2, pp. 129–137, 2012.
[9]
V. Papadimitriou, G. A. Maridakis, T. G. Sotiroudis, and A. Xenakis, “Antioxidant activity of polar extracts from olive oil and olive mill wastewaters: an EPR and photometric study,” European Journal of Lipid Science and Technology, vol. 107, no. 7-8, pp. 513–520, 2005.
[10]
F. Visioli, A. Romani, N. Mulinacci et al., “Antioxidant and other biological activities of olive mill waste waters,” Journal of Agricultural and Food Chemistry, vol. 47, no. 8, pp. 3397–3401, 1999.
[11]
O. Benavente-García, J. Castillo, J. Lorente, A. Ortu?o, and J. A. del Río, “Antioxidant activity of phenolics extracted from Olea europaea L. leaves,” Food Chemistry, vol. 68, no. 4, pp. 457–462, 2000.
[12]
B. Felizón, J. Fernández-Bola?os, A. Heredia, and R. Guillén, “Steam explosion pretreatment of olive cake,” Journal of the American Oil Chemists Society, vol. 77, no. 1, pp. 15–22, 2000.
[13]
H. Domínguez, J. Torres, and M. J. Nú?ez, “Antioxidant phenolics as food additives from agricultural wastes,” Polyphénols Actualités, vol. 21, pp. 25–30, 2001.
[14]
B. Amro, T. Aburjai, and S. Al-Khalil, “Antioxidative and radical scavenging effects of olive cake extract,” Fitoterapia, vol. 73, no. 6, pp. 456–461, 2002.
[15]
A. Ranalli, L. Lucera, and S. Contento, “Antioxidizing potency of phenol compounds in olive mill wastewater,” Journal of Agricultural and Food Chemistry, vol. 51, no. 26, pp. 7636–7641, 2003.
[16]
H. K. Obied, M. S. Allen, D. R. Bedgood, P. D. Prenzler, K. Robards, and R. Stockmann, “Bioactivity and analysis of biophenols recovered from olive mill waste,” Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 823–837, 2005.
[17]
G. Rodríguez, R. Rodríguez, J. Fernández-Bola?os, R. Guillén, and A. Jiménez, “Antioxidant activity of effluents during the purification of hydroxytyrosol and 3,4-dihydroxyphenylglycol from olive oil waste,” European Food Research and Technology, vol. 224, no. 6, pp. 733–741, 2007.
[18]
G. Rodríguez, A. Lama, M. Trujillo, J. L. Espartero, and J. Fernández-Bola?os, “Isolation of powerful antioxidant from Olea europaea fruit-mill waste: 3,4-dihydroxyphenylglycol,” Food Science and Technology, vol. 42, no. 2, pp. 483–490, 2009.
[19]
I. González-Hidalgo, S. Ba?ón, and J. M. Ros, “Evaluation of table olive by-product as a source of natural antioxidants,” International Journal of Food Science and Technology, vol. 47, no. 4, pp. 674–681, 2012.
[20]
J. Altarejos, S. Salido, M. Pérez-Bonilla et al., “Preliminary assay on the radical scavenging activity of olive wood extracts,” Fitoterapia, vol. 76, no. 3-4, pp. 348–351, 2005.
[21]
M. Pérez-Bonilla, S. Salido, T. A. van Beek et al., “Isolation and identification of radical scavengers in olive tree (Olea europaea) wood,” Journal of Chromatography A, vol. 1112, no. 1-2, pp. 311–318, 2006.
[22]
M. Pérez-Bonilla, S. Salido, T. A. van Beek et al., “Isolation of antioxidative secoiridoids from olive wood (Olea europaea L.) guided by on-line HPLC-DAD-radical scavenging detection,” Food Chemistry, vol. 124, no. 1, pp. 36–41, 2011.
[23]
H. Zbidi, S. Salido, J. Altarejos et al., “Olive tree wood phenolic compounds with human platelet antiaggregant properties,” Blood Cells, Molecules, and Diseases, vol. 42, no. 3, pp. 279–285, 2009.
[24]
G. Beltrán, C. del Río, S. Sánchez, and L. Martínez, “Seasonal changes in olive fruit characteristics and oil accumulation during ripening process,” Journal of the Science of Food and Agriculture, vol. 84, no. 13, pp. 1783–1790, 2004.
[25]
W. Brand-Williams, M. E. Cuvelier, and C. Berset, “Use of a free radical method to evaluate antioxidant activity,” Food Science and Technology, vol. 28, no. 1, pp. 25–30, 1995.
[26]
A. von Gadow, E. Joubert, and C. F. Hansmann, “Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA,” Journal of Agricultural and Food Chemistry, vol. 45, no. 3, pp. 632–638, 1997.
[27]
S. Mukhopadhyay, D. L. Luthria, and R. J. Robbins, “Optimization of extraction process for phenolic acids from black cohosh (Cimicifuga racemosa) by pressurized liquid extraction,” Journal of the Science of Food and Agriculture, vol. 86, no. 1, pp. 156–162, 2006.
[28]
B. F. de Simón, E. Cadahía, E. Conde, and M. C. García-Vallejo, “Low molecular weight phenolic compounds in Spanish oakwoods,” Journal of Agricultural and Food Chemistry, vol. 44, no. 6, pp. 1507–1511, 1996.
[29]
H. Tsukamoto, S. Hisada, and S. Nishibe, “Lignans from bark of the Olea plants. I,” Chemical and Pharmaceutical Bulletin, vol. 32, no. 7, pp. 2730–2735, 1984.
[30]
I. Parejo, F. Viladomat, J. Bastida et al., “Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants,” Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6882–6890, 2002.
[31]
J. M. Cruz, J. M. Domínguez, H. Domínguez, and J. C. Parajó, “Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials,” Journal of Agricultural and Food Chemistry, vol. 49, no. 5, pp. 2459–2464, 2001.
[32]
A. Moure, H. Domínguez, and J. C. Parajó, “Antioxidant activity of liquors from aqueous treatment of Pinus radiata wood,” Wood Science and Technology, vol. 39, no. 2, pp. 129–139, 2005.
[33]
J. M. Cruz, H. Domínguez, and J. C. Parajó, “Anti-oxidant activity of isolates from acid hydrolysates of Eucalyptus globulus wood,” Food Chemistry, vol. 90, no. 4, pp. 503–511, 2005.
[34]
J. Fernández-Bola?os, B. Felizón, M. Brenes, R. Guillén, and A. Heredia, “Hydroxytyrosol and tyrosol as the main compounds found in the phenolic fraction of steam-exploded olive stones,” Journal of the American Oil Chemists Society, vol. 75, no. 11, pp. 1643–1649, 1998.
[35]
I. Romero, E. Ruiz, E. Castro, and M. Moya, “Acid hydrolysis of olive tree biomass,” Chemical Engineering Research and Design, vol. 88, no. 5-6, pp. 633–640, 2010.
[36]
M. Bouaziz and S. Sayadi, “Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree,” European Journal of Lipid Science and Technology, vol. 107, no. 7-8, pp. 497–504, 2005.
[37]
M. M. Torres, P. Pierantozzi, M. E. Cáceres, P. Labombarda, G. Fontanazza, and D. M. Maestri, “Genetic and chemical assessment of Arbequina olive cultivar grown in Córdoba province, Argentina,” Journal of the Science of Food and Agriculture, vol. 89, no. 3, pp. 523–530, 2009.
[38]
Z. D. He, P. P. H. But, T. W. D. Chan et al., “Antioxidative glucosides from the fruits of Ligustrum lucidum,” Chemical and Pharmaceutical Bulletin, vol. 49, no. 6, pp. 780–784, 2001.
[39]
T. Tanahashi, T. Sakai, Y. Takenaka, N. Nagakura, and C. C. Chen, “Structure elucidation of two secoiridoid glucosides from Jasminum officinale L. var. grandiflorum (L.) Kobuski,” Chemical and Pharmaceutical Bulletin, vol. 47, no. 11, pp. 1582–1586, 1999.
[40]
D. Caruso, R. Colombo, R. Patelli, F. Giavarini, and G. Galli, “Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS),” Journal of Agricultural and Food Chemistry, vol. 48, no. 4, pp. 1182–1185, 2000.
[41]
L. Di Donna, F. Mazzotti, A. Napoli, R. Salerno, A. Sajjad, and G. Sindona, “Secondary metabolism of olive secoiridoids. New microcomponents detected in drupes by electrospray ionization and high-resolution tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 21, no. 3, pp. 273–278, 2007.
[42]
Y. Takenaka, T. Tanahashi, M. Shintaku, T. Sakai, N. Nagakura, and Parida, “Secoiridoid glucosides from Fraxinus americana,” Phytochemistry, vol. 55, no. 3, pp. 275–284, 2000.
[43]
S. W. Wright, D. L. Hageman, A. S. Wright, and L. D. McClure, “Convenient preparations of t-butyl esters and ethers from t-butanol,” Tetrahedron Letters, vol. 38, no. 42, pp. 7345–7348, 1997.