全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Interfering Substances on the Antimicrobial Activity of Selected Quaternary Ammonium Compounds

DOI: 10.1155/2013/237581

Full-Text   Cite this paper   Add to My Lib

Abstract:

Standard cleaning processes may not remove all the soiling typically found in food industry, such as carbohydrates, fats, or proteins. Contaminants have a high impact in disinfection as their presence may reduce the activity of disinfectants. The influence of alginic acid, bovine serum albumin, yeast extract, and humic acids was assessed on the antimicrobial activities of benzalkonium chloride and cetyltrimethyl ammonium bromide against Bacillus cereus vegetative cells and Pseudomonas fluorescens. The bacteria (single and consortium) were exposed to surfactants (single and combined) in the absence and presence of potential disinfection interfering substances. The antimicrobial effects of the surfactants were assessed based on the bacterial respiratory activity measured by oxygen uptake rate due to glucose oxidation. The tested surfactants were efficient against both bacteria (single and consortium) with minimum bactericidal concentrations ranging from 3 to 35?mg·L?1. The strongest effect was caused by humic acids that severely quenched antimicrobial action, increasing the minimum bactericidal concentration of the surfactants on P. fluorescens and the consortium. The inclusion of the other interfering substances resulted in mild interferences in the antibacterial activity. This study clearly demonstrates that humic acids should be considered as an antimicrobial interfering substance in the development of disinfection strategies. 1. Introduction In order to prevent and control microbial proliferation in industrial settings, cleaning and disinfection plans are applied on a regular basis [1, 2]. In food processing plants, the control of microbial contamination generally involves clean-in-place (CIP) procedures which consist of running alternated cycles of detergent and disinfectant solutions with water rinses in high turbulence regimes through the plant and pipeline circuits without dismantling or opening the equipment [2–5]. Biocides are currently used in industrial processes as the most significant countermeasure to control microbial growth and proliferation [6]. Industry moved progressively towards the use of surfactants that are less toxic and more biodegradable [7]. Surfactants are classified according to the ionic physiognomies of their hydrophilic group as anionic, cationic, nonionic, and zwitterionic [6, 8]. Quaternary ammonium compounds (QACs) are cationic surfactants that are commonly used because of their hard-surface cleaning, odor removal and antimicrobial properties [9]. Besides killing bacteria, the chemical nature of QACs can cause

References

[1]  J. S. G. Dooley and T. A. Roberts, “Control of vegetative micro-organisms in foods,” British Medical Bulletin, vol. 56, no. 1, pp. 142–157, 2000.
[2]  M. Sim?es, L. C. Sim?es, and M. J. Vieira, “A review of current and emergent biofilm control strategies,” LWT-Food Science and Technology, vol. 43, no. 4, pp. 573–583, 2010.
[3]  P. J. Bremer, S. Fillery, and A. J. McQuillan, “Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms,” International Journal of Food Microbiology, vol. 106, no. 3, pp. 254–262, 2006.
[4]  S. Srey, I. K. Jahid, and S.-D. Ha, “Biofilm formation in food industries: a food safety concern,” Food Control, vol. 31, no. 2, pp. 572–585, 2013.
[5]  S. J. Forsythe and P. R. Hayes, Food Hygiene, Microbiology and HACCP, Aspen Publishers, Gaithersburg, Md, USA, 3rd edition, 1998.
[6]  M. Sim?es, L. C. Sim?es, I. Machado, M. O. Pereira, and M. J. Vieira, “Control of flow-generated biofilms with surfactants: evidence of resistance and recovery,” Food and Bioproducts Processing, vol. 84, no. 4 C, pp. 338–345, 2006.
[7]  M. Sim?es, M. O. Pereira, and M. J. Vieira, “Effect of mechanical stress on biofilms challenged by different chemicals,” Water Research, vol. 39, no. 20, pp. 5142–5152, 2005.
[8]  N. Z. Atay, O. Yenigün, and M. Asutay, “Sorption of anionic surfactants SDS, AOT and cationic surfactant hyamine 1622 on natural soils,” Water, Air, and Soil Pollution, vol. 136, no. 1–4, pp. 55–67, 2002.
[9]  M. Sim?es, M. O. Pereira, and M. J. Vieira, “Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes,” Water Research, vol. 39, no. 2-3, pp. 478–486, 2005.
[10]  W. Paulus, Directory of Microbicides for the Protection of Materials—A Handbook, Springer, Chapman and Hall, 1993.
[11]  M. R. J. Salton, “Lytic agents, cell permeability, and monolayer penetrability,” The Journal of General Physiology, vol. 52, no. 1, pp. 227–252, 1968.
[12]  C. Ferreira, A. M. Pereira, M. C. Pereira, L. F. Melo, and M. Sim?es, “Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 5, pp. 1036–1043, 2011.
[13]  T. E. Cloete, L. Jacobs, and V. S. Br?zel, “The chemical control of biofouling in industrial water systems,” Biodegradation, vol. 9, no. 1, pp. 23–37, 1998.
[14]  E. Bessems, “The effect of practical conditions on the efficacy of disinfectants,” International Biodeterioration & Biodegradation, vol. 41, no. 3-4, pp. 177–183, 1998.
[15]  S. F. A. A. E. Aal, B. Hunsinger, and R. B?hm, “Determination of the bactericidal activity of chemical disinfectants against bacteria in dairies according to the DVG-guidelines,” Hygiene & Medizin, vol. 33, no. 11, pp. 463–471, 2008.
[16]  L. Gram, D. Bagge-Ravn, Y. Y. Ng, P. Gymoese, and B. F. Vogel, “Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes,” Food Control, vol. 18, no. 10, pp. 1165–1171, 2007.
[17]  R. J. W. Lambert and M. D. Johnston, “The effect of interfering substances on the disinfection process: a mathematical model,” Journal of Applied Microbiology, vol. 91, no. 3, pp. 548–555, 2001.
[18]  European Standard EN-1276, Chemical disinfectants and antiseptics-Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic, and institutional areas-Test method and requirements (phase 2, step 1), 1997.
[19]  K. Jon?, T. Takayama, M. Kuno, and E. Higashide, “Effect of alkyl chain length of benzalkonium chloride on the bactericidal activity and binding to organic materials,” Chemical & Pharmaceutical Bulletin, vol. 34, no. 10, pp. 4215–4224, 1986.
[20]  S. A. Gani, D. K. Chattoraj, and D. C. Mukherjee, “Binding of cationic surfactants to DNA, protein and DNA-protein mixtures,” Indian Journal of Biochemistry & Biophysics, vol. 36, no. 3, pp. 165–176, 1999.
[21]  M. Sim?es, M. O. Pereira, I. Machado, L. C. Sim?es, and M. J. Vieira, “Comparative antibacterial potential of selected aldehyde-based biocides and surfactants against planktonic Pseudomonas fluorescens,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 9, pp. 741–749, 2006.
[22]  M. Sim?es, L. C. Sim?es, and M. J. Vieira, “Species association increases biofilm resistance to chemical and mechanical treatments,” Water Research, vol. 43, no. 1, pp. 229–237, 2009.
[23]  C. G. Kumar and S. K. Anand, “Significance of microbial biofilms in food industry: a review,” International Journal of Food Microbiology, vol. 42, no. 1-2, pp. 9–27, 1998.
[24]  L. C. Sim?es, M. Lemos, P. Araújo, A. M. Pereira, and M. Sim?es, “The effects of glutaraldehyde on the control of single and dual biofilms of Bacillus cereus and Pseudomonas fluorescens,” Biofouling, vol. 27, no. 3, pp. 337–346, 2011.
[25]  K. M. Johnson, “Bacillus cereus foodborne illness—an update,” Journal of Food Protection, vol. 47, no. 2, pp. 145–153, 1984.
[26]  S. Notermans, J. Dufrenne, P. Teunis, R. Beumer, M. te Giffel, and P. Peeters Weem, “A risk assessment study of Bacillus cereus present in pasteurized milk,” Food Microbiology, vol. 14, no. 2, pp. 143–151, 1997.
[27]  T. E. Cloete, “Resistance mechanisms of bacteria to antimicrobial compounds,” International Biodeterioration & Biodegradation, vol. 51, no. 4, pp. 277–282, 2003.
[28]  M. Sim?es, L. C. Sim?es, M. O. Pereira, and M. J. Vieira, “Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms,” Biofouling, vol. 24, no. 5, pp. 339–349, 2008.
[29]  M. Sim?es, S. Cleto, M. O. Pereira, and M. J. Vieira, “Influence of biofilm composition on the resistance to detachment,” Water Science and Technology, vol. 55, no. 8-9, pp. 473–480, 2007.
[30]  M. Sim?es, M. O. Pereira, and M. J. Vieira, “Validation of respirometry as a short-term method to assess the efficacy of biocides,” Biofouling, vol. 21, no. 1, pp. 9–17, 2005.
[31]  M. D. Johnston, R. J. W. Lambert, G. W. Hanlon, and S. P. Denyer, “A rapid method for assessing the suitability of quenching agents for individual biocides as well as combinations,” Journal of Applied Microbiology, vol. 92, no. 4, pp. 784–789, 2002.
[32]  M. Heinzel, “Phenomena of biocide resistance in microorganisms,” International Biodeterioration & Biodegradation, vol. 41, no. 3-4, pp. 225–234, 1998.
[33]  D. Otzen, “Protein-surfactant interactions: a tale of many states,” Biochimica et Biophysica Acta, vol. 1814, no. 5, pp. 562–591, 2011.
[34]  G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 1999.
[35]  A. D. Russell, “Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations,” The Lancet Infectious Diseases, vol. 3, no. 12, pp. 794–803, 2003.
[36]  T. M?retr?, L. K. Vestby, L. L. Nesse, S. E. Storheim, K. Kotlarz, and S. Langsrud, “Evaluation of efficacy of disinfectants against Salmonella from the feed industry,” Journal of Applied Microbiology, vol. 106, no. 3, pp. 1005–1012, 2009.
[37]  C. A. Lawrence, “Mechanism of action and neutralizing agents for surface-active materials upon microorganisms,” Annals of the New York Academy of Sciences, vol. 53, no. 1, pp. 66–75, 1950.
[38]  B. E. Christensen, H. Ertesv?g, H. Beyenal, and Z. Lewandowski, “Resistance of biofilms containing alginate-producing bacteria to disintegration by an alginate degrading enzyme (AlgL),” Biofouling, vol. 17, no. 3, pp. 203–210, 2001.
[39]  J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999.
[40]  P. Watnick and R. Kolter, “Biofilm, city of microbes,” Journal of Bacteriology, vol. 182, no. 10, pp. 2675–2679, 2000.
[41]  T. F. C. Mah and G. A. O'Toole, “Mechanisms of biofilm resistance to antimicrobial agents,” Trends in Microbiology, vol. 9, no. 1, pp. 34–39, 2001.
[42]  D. G. Davies, A. M. Chakrabarty, and G. G. Geesey, “Exopolysaccharide production in biofilms—substratum activation of alginate gene-expression by Pseudomonas aeruginosa,” Applied and Environmental Microbiology, vol. 59, no. 4, pp. 1181–1186, 1993.
[43]  D. G. Davies and G. G. Geesey, “Regulation of the alginate biosynthesis gene Algc in Pseudomonas aeruginosa during biofilm development in continuous culture,” Applied and Environmental Microbiology, vol. 61, no. 3, pp. 860–867, 1995.
[44]  P. Stewart, Ed., Multicellular Nature of Biofilm Protection from Antimicrobial Agents, 2003.
[45]  U. A. Shinde and M. S. Nagarsenker, “Characterization of gelatin-sodium alginate complex coacervation system,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 3, pp. 313–317, 2009.
[46]  E. A. Ghabbour, G. Davies, and International Humic Substances Society, Humic Substances: Nature's Most Versatile Materials, Taylor & Francis, New York, NY, USA, 2004.
[47]  M. Tong, P. Zhu, X. Jiang, and H. Kim, “Influence of natural organic matter on the deposition kinetics of extracellular polymeric substances (EPS) on silica,” Colloids and Surfaces B, vol. 87, no. 1, pp. 151–158, 2011.
[48]  M. Ishiguro, W. Tan, and L. K. Koopal, “Binding of cationic surfactants to humic substances,” Colloids and Surfaces A, vol. 306, no. 1–3, pp. 29–39, 2007.
[49]  L. K. Koopal, T. P. Goloub, and T. A. Davis, “Binding of ionic surfactants to purified humic acid,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 360–367, 2004.
[50]  S. A. Visser, “Physiological action of humic substances on microbial cells,” Soil Biology & Biochemistry, vol. 17, no. 4, pp. 457–462, 1985.
[51]  S. Salati, G. Papa, and F. Adani, “Perspective on the use of humic acids from biomass as natural surfactants for industrial applications,” Biotechnology Advances, vol. 29, no. 6, pp. 913–922, 2011.
[52]  H. A. Hartung, “Stimulation of anaerobic digestion with peat humic substance,” Science of the Total Environment, vol. 113, no. 1-2, pp. 17–33, 1992.
[53]  I. D. Pouneva, “Effect of humic substances on the growth of microalgal cultures,” Russian Journal of Plant Physiology, vol. 52, no. 3, pp. 410–413, 2005.
[54]  L. Hakobyan, L. Gabrielyan, and A. Trchounian, “Yeast extract as an effective nitrogen source stimulating cell growth and enhancing hydrogen photoproduction by Rhodobacter sphaeroides strains from mineral springs,” International Journal of Hydrogen Energy, vol. 37, no. 8, pp. 6519–6526, 2012.
[55]  A. K. Camper, “Involvement of humic substances in regrowth,” International Journal of Food Microbiology, vol. 92, no. 3, pp. 355–364, 2004.
[56]  M. R. W. Brown and R. M. E. Richards, “Effect of ethylenediamine tetraacetate on the resistance of Pseudomonas aeruginosa to antibacterial agents,” Nature, vol. 207, no. 5004, pp. 1391–1393, 1965.
[57]  S. K. Sagoo, R. Board, and S. Roller, “Chitosan potentiates the antimicrobial action of sodium benzoate on spoilage yeasts,” Letters in Applied Microbiology, vol. 34, no. 3, pp. 168–172, 2002.
[58]  S. Langsrud, B. Baardsen, and G. Sundheim, “Potentiation of the lethal effect of peroxygen on Bacillus cereus spores by alkali and enzyme wash,” International Journal of Food Microbiology, vol. 56, no. 1, pp. 81–86, 2000.
[59]  J. S. Chapman, “Biocide resistance mechanisms,” International Biodeterioration and Biodegradation, vol. 51, no. 2, pp. 133–138, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133