Retrogenes form a class of gene duplicate lacking the regulatory sequences found outside of the mRNA-coding regions of the parent gene. It is not clear how a retrogene’s lack of parental regulatory sequences affects the evolution of the gene pair. To explore the evolution of parent genes and retrogenes, we investigated three such gene pairs in the family Drosophilidae; in Drosophila melanogaster, these gene pairs are CG8331 and CG4960, CG17734 and CG11825, and Sep2 and Sep5. We investigated the embryonic expression patterns of these gene pairs across multiple Drosophila species. Expression patterns of the parent genes and their single copy orthologs are relatively conserved across species, whether or not a species has a retrogene copy, although there is some variation in CG8331 and CG17734. In contrast, expression patterns of the retrogene orthologs have diversified. We used the genome sequences of 20 Drosophila species to investigate coding sequence evolution. The coding sequences of the three gene pairs appear to be evolving predominantly under negative selection; however, the parent genes and retrogenes show some distinct differences in amino acid sequence. Therefore, in general, retrogene expression patterns and coding sequences are distinct compared to their parents and, in some cases, retrogene expression patterns diversify. 1. Introduction Gene duplication plays a major role in evolution by expanding??gene families and facilitating the diversification of??gene function. Following??duplication, gene copies can diverge in function. Retroduplication occurs when mRNA from a parent gene is reverse-transcribed and inserted into the genome, producing a new retrogene copy that lacks the regulatory elements and introns of the parent [1, 2]. The lack of parental regulatory elements in a new retrogene is often associated with a lack of function and pseudogenization; however, those retrogenes that are transcribed presumably lack the expression pattern of their parents and may therefore acquire novel functions [3]. Genome-wide studies have provided insights into the evolutionary outcome of this initial asymmetry between parent gene and retrogene regulatory elements and expression patterns, including several studies focusing on protein-coding parent genes and retrogenes in Drosophila. Expression data from Drosophila melanogaster show that retrogenes tend to be expressed at a lower level and in fewer tissues than their parents, with the exception that retrogenes tend to be more represented in testes than parent genes [4, 5]. The mean expression levels of
References
[1]
H. Kaessmann, N. Vinckenbosch, and M. Long, “RNA-based gene duplication: mechanistic and evolutionary insights,” Nature Reviews Genetics, vol. 10, no. 1, pp. 19–31, 2009.
[2]
J. Brosius, “Retroposons: seeds of evolution,” Science, vol. 251, no. 4995, article 753, 1991.
[3]
V. Katju, “In with the old, in with the new: the promiscuity of the duplication process engenders diverse pathways for novel gene creation,” International Journal of Evolutionary Biology, vol. 2012, Article ID 341932, 24 pages, 2012.
[4]
Y. Bai, C. Casola, C. Feschotte, and E. Betrán, “Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila,” Genome Biology, vol. 8, no. 1, article R11, 2007.
[5]
M. G. I. Langille and D. V. Clark, “Parent genes of retrotransposition-generated gene duplicates in Drosophila melanogaster have distinct expression profiles,” Genomics, vol. 90, no. 3, pp. 334–343, 2007.
[6]
Y. Bai, C. Casola, and E. Betrán, “Evolutionary origin of regulatory regions of retrogenes in Drosophila,” BMC Genomics, vol. 9, article 241, 2008.
[7]
Y. Bai, C. Casola, and E. Betrán, “Quality of regulatory elements in Drosophila retrogenes,” Genomics, vol. 93, no. 1, pp. 83–89, 2009.
[8]
A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. L. Yan, and J. Postlethwait, “Preservation of duplicate genes by complementary, degenerative mutations,” Genetics, vol. 151, no. 4, pp. 1531–1545, 1999.
[9]
E. Betrán, K. Thornton, and M. Long, “Retroposed new genes out of the X in Drosophila,” Genome Research, vol. 12, no. 12, pp. 1854–1859, 2002.
[10]
M. D. Vibranovski, Y. Zhang, and M. Long, “General gene movement off the X chromosome in the Drosophila genus,” Genome Research, vol. 19, no. 5, pp. 897–903, 2009.
[11]
R. P. Meisel, M. V. Han, and M. W. Hahn, “A complex suite of forces drives gene traffic from Drosophila X chromosomes,” Genome Biology and Evolution, vol. 1, pp. 176–188, 2009.
[12]
M. D. Vibranovski, H. F. Lopes, T. L. Karr, and M. Long, “Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes,” PLoS Genetics, vol. 5, no. 11, Article ID e1000731, 2009.
[13]
R. M. Waterhouse, E. M. Zdobnov, F. Tegenfeldt, J. Li, and E. V. Kriventseva, “OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011,” Nucleic Acids Research, vol. 39, no. 1, pp. D283–D288, 2011.
[14]
M. Calero, G. R. Whittaker, and R. N. Collins, “Yop1p, the yeast homolog of the polyposis locus protein 1, interacts with Yip1p and negatively regulates cell growth,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 12100–12112, 2001.
[15]
A. Y. Gracey, J. V. Troll, and G. N. Somero, “Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 4, pp. 1993–1998, 2001.
[16]
J. Wang, Y. Cao, Y. Chen, Y. Chen, P. Gardner, and D. F. Steiner, “Pancreatic β cells lack a low glucose and O2-inducible mitochondrial protein that augments cell survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10636–10641, 2006.
[17]
L. H. Hartwell, J. Culotti, and B. Reid, “Genetic control of the cell-division cycle in yeast. I. Detection of mutants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 66, no. 2, pp. 352–359, 1970.
[18]
J. Saarikangas and Y. Barral, “The emerging functions of septins in metazoans,” EMBO Reports, vol. 12, no. 11, pp. 1118–1126, 2011.
[19]
J. C. Adam, J. R. Pringle, and M. Peifer, “Evidence for functional differentiation among Drosophila septins in cytokinesis and cellularization,” Molecular Biology of the Cell, vol. 11, no. 9, pp. 3123–3135, 2000.
[20]
K. Tamura, S. Subramanian, and S. Kumar, “Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks,” Molecular Biology and Evolution, vol. 21, no. 1, pp. 36–44, 2004.
[21]
A. G. Clark, M. B. Eisen, D. R. Smith, et al., “Evolution of genes and genomes on the Drosophila phylogeny,” Nature, vol. 450, no. 7167, pp. 203–218, 2007.
[22]
D. L. Des Marais and M. D. Rausher, “Escape from adaptive conflict after duplication in an anthocyanin pathway gene,” Nature, vol. 454, no. 7205, pp. 762–765, 2008.
[23]
Y. Yang, Z. C. Hou, Y. H. Qian, H. Kang, and Q. T. Zeng, “Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilaidae, Diptera),” Molecular Phylogenetics and Evolution, vol. 62, no. 1, pp. 214–223, 2012.
[24]
J. A. Campos-Ortega and V. Hartenstein, The Embryonic Development of Drosophila Melanogaster, Springer, 1997.
[25]
D. K. Pritchard and G. Schubiger, “Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio,” Genes and Development, vol. 10, no. 9, pp. 1131–1142, 1996.
[26]
S. Richards, Y. Liu, B. R. Bettencourt et al., “Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution,” Genome Research, vol. 15, no. 1, pp. 1–18, 2005.
[27]
S. E. Celniker, D. A. Wheeler, B. Kronmiller et al., “Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence,” Genome Biology, vol. 3, no. 12, 2002.
[28]
S. Tweedie, M. Ashburner, K. Falls et al., “FlyBase: enhancing Drosophila gene ontology annotations,” Nucleic Acids Research, vol. 37, no. 1, pp. D555–D559, 2009.
[29]
P. McQuilton, S. E. St Pierre, and J. Thurmond, “FlyBase 101: the basics of navigating FlyBase,” Nucleic Acid Research, vol. 40, pp. 706–714, 2012.
[30]
S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.
[31]
S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.
[32]
E. Birney, M. Clamp, and R. Durbin, “GeneWise and Genomewise,” Genome Research, vol. 14, no. 5, pp. 988–995, 2004.
[33]
F. Sievers, A. Wilm, D. Dineen, et al., “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega,” Molecular Systems Biology, vol. 7, article 539, 2011.
[34]
M. Suyama, D. Torrents, and P. Bork, “PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments,” Nucleic Acids Research, vol. 34, pp. W609–W612, 2006.
[35]
S. L. Baldauf, “Phylogeny for the faint of heart: a tutorial,” Trends in Genetics, vol. 19, no. 6, pp. 345–351, 2003.
[36]
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[37]
I. Letunic and P. Bork, “Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation,” Bioinformatics, vol. 23, no. 1, pp. 127–128, 2007.
[38]
I. Letunic and P. Bork, “Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy,” Nucleic Acids Research, vol. 39, no. 2, pp. W475–W478, 2011.
[39]
S. Rozen and H. Skaletsky, “Primer3 on the WWW for general users and for biologist programmers,” Methods in Molecular Biology, vol. 132, pp. 365–386, 2000.
[40]
J. M. Ruijter, C. Ramakers, W. M. H. Hoogaars et al., “Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data,” Nucleic Acids Research, vol. 37, no. 6, article e45, 2009.
[41]
M. Kubista and R. Sindelka, “The prime technique: real-time PCR data,” G.I.T. Laboratory Journal, vol. 9-10, pp. 33–35, 2007.
[42]
D. Tautz and C. Pheifle, “A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback,” Chromosoma, vol. 98, no. 2, pp. 81–85, 1989.
[43]
R. Weiszmann, A. S. Hammonds, and S. E. Celniker, “Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos,” Nature Protocols, vol. 4, no. 5, pp. 605–618, 2009.
[44]
E. Lécuyer, N. Parthasarathy, and H. M. Krause, “Fluorescent in situ hybridization protocols in Drosophila embryos and tissues,” Methods in Molecular Biology, vol. 420, pp. 289–302, 2008.
[45]
A. Krogh, B. Larsson, G. Von Heijne, and E. L. L. Sonnhammer, “Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes,” Journal of Molecular Biology, vol. 305, no. 3, pp. 567–580, 2001.
[46]
J. Trigg, K. Gutwin, A. E. Keating, and B. Berger, “Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone,” PLoS One, vol. 6, no. 8, Article ID e23519, 2011.
[47]
J. Zhang, R. Nielsen, and Z. Yang, “Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level,” Molecular Biology and Evolution, vol. 22, no. 12, pp. 2472–2479, 2005.
[48]
Z. Yang, “PAML 4: phylogenetic analysis by maximum likelihood,” Molecular Biology and Evolution, vol. 24, no. 8, pp. 1586–1591, 2007.
[49]
Z. Yang, W. S. W. Wong, and R. Nielsen, “Bayes empirical Bayes inference of amino acid sites under positive selection,” Molecular Biology and Evolution, vol. 22, no. 4, pp. 1107–1118, 2005.
[50]
W. Delport, A. F. Y. Poon, S. D. W. Frost, and S. L. Kosakovsky Pond, “Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology,” Bioinformatics, vol. 26, no. 19, Article ID btq429, pp. 2455–2457, 2010.
[51]
S. L. Kosakovsky Pond and S. D. W. Frost, “Datamonkey: rapid detection of selective pressure on individual sites of codon alignments,” Bioinformatics, vol. 21, no. 10, pp. 2531–2533, 2005.
[52]
S. L. Kosakovsky Pond and S. D. W. Frost, “Not so different after all: a comparison of methods for detecting amino acid sites under selection,” Molecular Biology and Evolution, vol. 22, no. 5, pp. 1208–1222, 2005.
[53]
B. Murrell, J. O. Wertheim, S. Moola, T. Weighill, K. Scheffler, and S. L. Kosakovsky Pond, “Detecting individual sites subject to episodic diversifying selection,” PLOS Genetics, vol. 8, no. 7, Article ID e100276, 2012.
[54]
P. Tomancak, B. P. Berman, A. Beaton et al., “Global analysis of patterns of gene expression during Drosophila embryogenesis,” Genome Biology, vol. 8, no. 7, article R145, 2007.
[55]
P. Tomancak, A. Beaton, R. Weiszmann et al., “Systematic determination of patterns of gene expression during Drosophila embryogenesis,” Genome Biology, vol. 3, no. 12, 2002.
[56]
V. R. Chintapalli, J. Wang, and J. A. T. Dow, “Using FlyAtlas to identify better Drosophila melanogaster models of human disease,” Nature Genetics, vol. 39, no. 6, pp. 715–720, 2007.
[57]
B. R. Graveley, A. N. Brooks, J. W. Carlson et al., “The developmental transcriptome of Drosophila melanogaster,” Nature, vol. 471, no. 7339, pp. 473–479, 2011.
[58]
Y. Zhang, D. Sturgill, M. Parisi, S. Kumar, and B. Oliver, “Constraint and turnover in sex-biased gene expression in the genus Drosophila,” Nature, vol. 450, no. 7167, pp. 233–237, 2007.
[59]
N. Vinckenbosch, I. Dupanloup, and H. Kaessmann, “Evolutionary fate of retroposed gene copies in the human genome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3220–3225, 2006.
[60]
J. Wang, M. Long, and M. D. Vibranovski, “Retrogenes moved out of the z chromosome in the silkworm,” Journal of Molecular Evolution, vol. 74, no. 3-4, pp. 113–126, 2012.
[61]
C. M. Field, O. Al-Awar, J. Rosenblatt, M. L. Wong, B. Alberts, and T. J. Mitchison, “A purified Drosophila septin complex forms filaments and exhibits GTPase activity,” Journal of Cell Biology, vol. 133, no. 3, pp. 605–616, 1996.
[62]
K. G. Guruharsha, J. F. Rual, B. Zhai, et al., “A protein complex network of Drosophila melanogaster,” Cell, vol. 147, no. 3, pp. 690–703, 2011.
[63]
A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, and G. J. Barton, “Jalview Version 2-A multiple sequence alignment editor and analysis workbench,” Bioinformatics, vol. 25, no. 9, pp. 1189–1191, 2009.
[64]
F. Pan, R. L. Malmberg, and M. Momany, “Analysis of septins across kingdoms reveals orthology and new motifs,” BMC Evolutionary Biology, vol. 7, article 103, 2007.
[65]
A. C. Marques, I. Dupanloup, N. Vinckenbosch, A. Reymond, and H. Kaessmann, “Emergence of young human genes after a burst of retroposition in primates,” PLoS Biology, vol. 3, no. 11, article e357, 2005.
[66]
B. P. Cusack and K. H. Wolfe, “Not born equal: increased rate asymmetry in relocated and retrotransposed rodent gene duplicates,” Molecular Biology and Evolution, vol. 24, no. 3, pp. 679–686, 2007.
[67]
S. Ohno, Evolution By Gene Duplication, Springer, 1970.