Methods for estimating divergence times from molecular data have improved dramatically over the past decade, yet there are few studies examining alternative taxon sampling effects on node age estimates. Here, I investigate the effect of undersampling species diversity on node ages of the South American lizard clade Liolaemini using several alternative subsampling strategies for both time calibrations and taxa numbers. Penalized likelihood (PL) and Bayesian molecular dating analyses were conducted on a densely sampled (202 taxa) mtDNA-based phylogenetic hypothesis of Iguanidae, including 92 Liolaemini species. Using all calibrations and penalized likelihood, clades with very low taxon sampling had node age estimates younger than clades with more complete taxon sampling. The effect of Bayesian and PL methods differed when either one or two calibrations only were used with dense taxon sampling. Bayesian node ages were always older when fewer calibrations were used, whereas PL node ages were always younger. This work reinforces two important points: (1) whenever possible, authors should strongly consider adding as many taxa as possible, including numerous outgroups, prior to node age estimation to avoid considerable node age underestimation and (2) using more, critically assessed, and accurate fossil calibrations should yield improved divergence time estimates. 1. Introduction Alternative taxon sampling strategies are known to affect many facets of phylogenetic reconstruction [1–3]. Linder et al. [4] conducted one of the most thorough analyses assessing the impact of taxon sampling on divergence date estimation using resampling analyses. This study found that mean estimated ages of focal nodes were significantly younger with sparser taxon sampling than when taxa from the complete dataset were included. In addition, the more distant the focal node was from the calibration point, the more sensitive estimation effects were on nodal ages if the taxa were undersampled, especially for nonparametric rate-smoothing (NPRS) methods; but penalized likelihood (PL) and Bayesian methods also were prone to these effects especially if undersampling was large. Subsequent studies following up on these important results are lacking in the literature. This is especially important because numerous multigene studies estimate divergence times but often significantly undersample large clades using a single representative species in place of higher taxonomic groups. I argue that unless these large clades are densely sampled and calibration points are carefully chosen and spread
References
[1]
S. Poe and D. L. Swofford, “Taxon sampling revisited,” Nature, vol. 398, no. 6725, pp. 299–300, 1999.
[2]
D. D. Pollock, D. J. Zwickl, J. A. McGuire, and D. M. Hillis, “Increased taxon sampling is advantageous for phylogenetic inference,” Systematic Biology, vol. 51, no. 4, pp. 664–671, 2002.
[3]
D. J. Zwickl and D. M. Hillis, “Increased taxon sampling greatly reduces phylogenetic error,” Systematic Biology, vol. 51, no. 4, pp. 588–598, 2002.
[4]
H. P. Linder, C. R. Hardy, and F. Rutschmann, “Taxon sampling effects in molecular clock dating: an example from the African Restionaceae,” Molecular Phylogenetics and Evolution, vol. 35, no. 3, pp. 569–582, 2005.
[5]
P. C. J. Donoghue and M. J. Benton, “Rocks and clocks: calibrating the Tree of Life using fossils and molecules,” Trends in Ecology and Evolution, vol. 22, no. 8, pp. 424–431, 2007.
[6]
J. F. Parham, P. C. J. Donoghue, C. J. Bell et al., “Best practices for justifying fossil calibrations,” Systematic Biology, vol. 61, no. 2, pp. 346–359, 2012.
[7]
H. Sauquet, S. Y. W. Ho, M. A. Gandolfo et al., “Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales),” Systematic Biology, vol. 61, no. 2, pp. 289–313, 2012.
[8]
J. A. Schulte II, J. R. Macey, R. E. Espinoza, and A. Larson, “Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal,” Biological Journal of the Linnean Society, vol. 69, no. 1, pp. 75–102, 2000.
[9]
J. A. Schulte II and F. Moreno-Roark, “Live birth among Iguanian lizards predates pliocene-pleistocene glaciations,” Biology Letters, vol. 6, no. 2, pp. 216–218, 2010.
[10]
F. M. Fontanella, M. Olave, L. J. Avila, J. W. Sites Jr., and M. Morando, “Molecular dating and diversification of the South American lizard genus Liolaemus (sub-genus Eulaemus) based on nuclear and mitochondrial DNA sequences,” Zoological Journal of the Linnean Society, vol. 164, no. 4, pp. 825–835, 2012.
[11]
A. Dornburg, M. C. Brandley, M. R. McGowen, and T. J. Near, “Relaxed clocks and inferences of heterogeneous patterns of nucleotide substitution and divergence time estimates across whales and dolphins (Mammalia: Cetacea),” Molecular Biology and Evolution, vol. 29, no. 2, pp. 721–736, 2012.
[12]
W. P. Maddison and D. R. Maddison, “Mesquite: a modular system for evolutionary analysis,” Version 2.75, 2011, http://mesquiteproject.org/mesquite/mesquite.html.
[13]
A. Stamatakis, P. Hoover, and J. Rougemont, “A rapid bootstrap algorithm for the RAxML web servers,” Systematic Biology, vol. 57, no. 5, pp. 758–771, 2008.
[14]
M. A. Miller, W. Pfeiffer, and T. Schwartz, “Creating the CIPRES Science Gateway for inference of large phylogenetic trees,” in Proceedings of the Gateway Computing Environments Workshop (GCE '10), pp. 1–8, New Orleans, LA, USA, November 2010.
[15]
R. Lanfear, B. Calcott, S. Y. W. Ho, and S. Guindon, “PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses,” Molecular Biology and Evolution, vol. 29, pp. 1695–1701, 2012.
[16]
J. Felsenstein and H. Kishino, “Is there something wrong with the bootstrap on phylogenies? A reply to Hillis and Bull,” Systematic Biology, vol. 42, no. 2, pp. 193–200, 1993.
[17]
F. Ronquist, M. Teslenko, P. van der Mark et al., “Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space,” Systematic Biology, vol. 61, no. 3, pp. 539–542, 2012.
[18]
A. Rambaut and A. J. Drummond, “Tracer v1.4 2003–2007 MCMC trace analysis package,” 2007, http://tree.bio.ed.ac.uk/software/tracer/.
[19]
M. E. Alfaro, S. Zoller, and F. Lutzoni, “Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence,” Molecular Biology and Evolution, vol. 20, no. 2, pp. 255–266, 2003.
[20]
C. J. Douady, F. Delsuc, Y. Boucher, W. F. Doolittle, and E. J. P. Douzery, “Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability,” Molecular Biology and Evolution, vol. 20, no. 2, pp. 248–254, 2003.
[21]
P. O. Lewis, M. T. Holder, and K. E. Holsinger, “Polytomies and bayesian phylogenetic inference,” Systematic Biology, vol. 54, no. 2, pp. 241–253, 2005.
[22]
M. J. Sanderson, “r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock,” Bioinformatics, vol. 19, no. 2, pp. 301–302, 2003.
[23]
M. J. Sanderson, “Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach,” Molecular Biology and Evolution, vol. 19, no. 1, pp. 101–109, 2002.
[24]
S. B. Hedges, J. E. Blair, M. L. Venturi, and J. L. Shoe, “A molecular timescale of eukaryote evolution and the rise of complex multicellular life,” BMC Evolutionary Biology, vol. 4, article 2, 2004.
[25]
D. Pisani, L. L. Poling, M. Lyons-Weiler, and S. B. Hedges, “The colonization of land by animals: Molecular phylogeny and divergence times among arthropods,” BMC Biology, vol. 2, article 1, 2004.
[26]
S. Y. W. Ho, M. J. Phillips, A. J. Drummond, and A. Cooper, “Accuracy of rate estimation using relaxed-clock models with a critical focus on the early metazoan radiation,” Molecular Biology and Evolution, vol. 22, no. 5, pp. 1355–1363, 2005.
[27]
T. J. Near, P. A. Meylan, and H. B. Shaffer, “Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles,” American Naturalist, vol. 165, no. 2, pp. 137–146, 2005.
[28]
D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony* (and Other Methods), Version 4.0, Sinauer Associates, Sunderland, Mass, USA, 2003.
[29]
J. L. Thorne and H. Kishino, “Divergence time and evolutionary rate estimation with multilocus data,” Systematic Biology, vol. 51, no. 5, pp. 689–702, 2002.
[30]
J. P. Huelsenbeck, B. Larget, and D. Swofford, “A compound Poisson process for relaxing the molecular clock,” Genetics, vol. 154, no. 4, pp. 1879–1892, 2000.
[31]
T. Lepage, D. Bryant, H. Philippe, and N. Lartillot, “A general comparison of relaxed molecular clock models,” Molecular Biology and Evolution, vol. 24, no. 12, pp. 2669–2680, 2007.
[32]
J. L. Thorne, H. Kishino, and I. S. Painter, “Estimating the rate of evolution of the rate of molecular evolution,” Molecular Biology and Evolution, vol. 15, no. 12, pp. 1647–1657, 1998.
[33]
N. Lartillot and H. Philippe, “A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process,” Molecular Biology and Evolution, vol. 21, no. 6, pp. 1095–1109, 2004.
[34]
E. Paradis, J. Claude, and K. Strimmer, “APE: analyses of phylogenetics and evolution in R language,” Bioinformatics, vol. 20, no. 2, pp. 289–290, 2004.
[35]
M. J. Sanderson and J. A. Doyle, “Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data,” American Journal of Botany, vol. 88, pp. 1499–1516, 2001.
[36]
A. M. Albino, “Lagartos iguanios del Colhuehuapense (Mioceno Temprano) de Gaiman (Provincia del Chubut, Argentina),” Ameghiniana, vol. 45, pp. 775–782, 2008.
[37]
L. J. Harmon, J. A. Schulte II, A. Larson, and J. B. Losos, “Tempo and mode of evolutionary radiation in iguanian lizards,” Science, vol. 301, no. 5635, pp. 961–964, 2003.
[38]
A. M. Albino, “Evolution of squamata reptiles in Patagonia based on the fossil record,” Biological Journal of the Linnean Society, vol. 103, no. 2, pp. 441–457, 2011.
[39]
M. Li, Y. Tian, Y. Zhao, and W. Bu, “Higher level phylogeny and the first divergence time estimation of heteroptera (Insecta: Hemiptera) based on multiple genes,” PLoS ONE, vol. 7, no. 2, Article ID e32152, 2012.
[40]
D. G. Mulcahy, B. P. Noonan, T. Moss et al., “Estimating divergence dates and evaluating dating methods using phylogenomic and mitochondrial data in squamate reptiles,” Molecular Phylogenetics and Evolution, vol. 65, pp. 974–991, 2012.
[41]
Y. Okajima and Y. Kumazawa, “Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications,” BMC Evolutionary Biology, vol. 10, no. 1, article 141, 2010.
[42]
T. M. Townsend, D. G. Mulcahy, B. P. Noonan et al., “Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation,” Molecular Phylogenetics and Evolution, vol. 61, no. 2, pp. 363–380, 2011.
[43]
N. Vidal and S. B. Hedges, “The molecular evolutionary tree of lizards, snakes, and amphisbaenians,” Comptes Rendus, vol. 332, no. 2-3, pp. 129–139, 2009.
[44]
M. F. Breitman, L. J. Avila, J. W. Sites, and M. Morando, “Lizards from the end of the world: phylogenetic relationships of the Liolaemus lineomaculatus section (Squamata: Iguania: Liolaemini),” Molecular Phylogenetics and Evolution, vol. 59, no. 2, pp. 364–376, 2011.
[45]
M. F. Breitman, L. J. Avila, M. Parra, J. W. Sites Jr., and M. Morando, “How lizards survived blizzards: phylogeography of the Liolaemus lineomaculatus group (Liolaemidae) reveals multiple breaks and refugia in southern Patagonia, and their concordance with other co-distributed taxa,” Molecular Ecology, vol. 21, pp. 6068–6085, 2012.
[46]
F. Fontanella, N. Feltrin, L. J. Avila, J. W. Sites Jr., and M. Morando, “Early stages of divergence: phylogeography, climate modeling, and niche differentiation in the South American lizard Liolaemus petrophilus (Squamata: Liolaemidae),” Ecology and Evolution, vol. 2, pp. 792–808, 2012.
[47]
I. Vera-Escalona, G. D’Elía, N. Gouin et al., “Lizards on ice: evidence for multiple refugia in Liolaemus pictus (Squamata: Liolaemidae) during the last glacial maximum in the southern Andean beech forests,” Public Library of Science ONE, vol. 7, Article ID e48358, 2012.
[48]
J. J. Wiens, M. C. Brandley, and T. W. Reeder, “Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles,” Evolution, vol. 60, no. 1, pp. 123–141, 2006.
[49]
Y. Okajima and Y. Kumazawa, “Mitogenomic perspectives into iguanid phylogeny and biogeography: gondwanan vicariance for the origin of Madagascan oplurines,” Gene, vol. 441, no. 1-2, pp. 28–35, 2009.
[50]
A. F. Hugall, R. Foster, and M. S. Y. Lee, “Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1,” Systematic Biology, vol. 56, no. 4, pp. 543–563, 2007.
[51]
H.-D. Sues and P. E. Olsen, “Triassic vertebrates of Gondwanan aspect from the Richmond basin of Virginia,” Science, vol. 249, no. 4972, pp. 1020–1023, 1990.
[52]
J. A. Holman, “Herpetofauna of the Calf Creek local fauna (Lower Oligocene: Cypress Hills Formation) of Saskatchewan,” Canadian Journal of Earth Sciences, vol. 9, pp. 1612–1631, 1972.
[53]
R. Estes, “The fossil record and early distribution of lizards,” in Advances in Herpetology and Evolutionary Biology: Essays in Honour of Ernest E. Williams, A. G. J. Rhodin and K. Miyata, Eds., pp. 365–398, Museum of Comparative Zoology, Cambridge, Mass, USA, 1983.
[54]
M. D. Robinson and T. R. van Devender, “Miocene lizards from Wyoming and Nebraska,” Copeia, no. 4, pp. 698–704, 1973.
[55]
J. A. Holman, “Some amphibians and reptiles from the Oligocene of northeastern Colorado,” Dakoterra, vol. 3, pp. 16–21, 1987.
[56]
D. A. Yatkola, “Mid-Miocene lizards from western Nebraska,” Copeia, vol. 1976, pp. 645–654, 1976.
[57]
K. T. Smith, “A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: biogeography during the warmest interval of the Cenozoic,” Journal of Systematic Palaeontology, vol. 7, no. 3, pp. 299–358, 2009.
[58]
K. T. Smith, “A diverse new assemblage of Late Eocene squamates (Reptilia) from the Chadron Formation of North Dakota, U.S.A.,” Palaeontologia Electronica, vol. 9, no. 2, pp. 1–44, 2006.