|
Solution of Boundary Value Problems by Approaching Spline TechniquesDOI: 10.1155/2013/482050 Abstract: In the present work a nonpolynomial spline function is used to approximate the solution of the second order two point boundary value problems. The classes of numerical methods of second order, for a specific choice of parameters involved in nonpolynomial spline, have been developed. Numerical examples are presented to illustrate the applications of this method. The solutions of these examples are found at the nodal points with various step sizes and with various parameters (α, β). The absolute errors in each example are estimated, and the comparison of approximate values, exact values, and absolute errors of at the nodal points are shown graphically. Further, shown that nonpolynomial spline produces accurate results in comparison with the results obtained by the B-spline method and finite difference method. 1. Introduction There are many linear and nonlinear problems in science and engineering, namely, second order differential equations with various types of boundary conditions, which are solved either analytically or numerically. Numerical simulation in engineering science and in applied mathematics has become a powerful tool to model the physical phenomena, particularly when analytical solutions are not available, then very difficult to obtain. The numerical solution of two-point boundary value problems (BVPs) is of great importance due to its wide application in scientific research. Several authors like Bickley [1] and Khan [2] have considered the applications of cubic spline functions for the solution of two point boundary value problems. Detailed explanation of theory of splines is given in [3, 4]. Some of already established methods to solve the boundary value problems are shooting method, finite difference method, finite volume method, variational iteration method, and Adomian decomposition method. Chawla and Katti [5] employed finite difference method for a class of singular two-point BVPs; a class of BVPs was solved by using numerical integration [6]; Ravi kanth and Reddy dealt with cubic spline [7]; the variational iteration method was proposed originally by He [8] in 1999; Adomian et al. solved a generalization of Airy’s equation by decomposition method [9]. In the present communication we apply nonpolynomial spline functions to develop numerical method for obtaining the approximations to the solution of second order two point boundary value problem of the form This type of problem (by missing the term containing ) is proposed by the authors in [10, 11]. Numerical solution of (1) based on finite difference, finite element, and finite volume
|