全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estrogen Inhibits Colon Polyp Formation by Reducing Angiogenesis in a Carcinogen-Induced Rat Model

DOI: 10.1155/2013/453898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To study the effects of estrogen on colon polyp formation, proliferation, and angiogenesis on a rat model of colon cancer induced by dimethylhydrazine (DMH). Methods. Thirty-six female ovariectomized (OVX) rats were randomly divided into 3 groups: (I) control group (administrated with vehicles weekly), (II) DMH group (administrated with DMH weekly), and (III) DMH + E2 group (administrated with DMH and 17 -estradiol weekly). The incidence, volumes, and multiplicity of colon polyps in each group were evaluated. The microvessel density (MVD), the expressions of Proliferating Cell Nuclear Antigen (PCNA), and the expressions of HIF-1α and VEGF in polyps were detected in each group. Results. Estrogen reduced the multiplicity, volumes, and the PCNA expressions of DMH-induced colon polyps. The MVD in DMH + E2 group was significantly lower than that in DMH group. Estrogen treatment decreased the HIF-1α and VEGF expressions at both mRNA and protein level. Conclusion. Estrogen replacement was protective for ovariectomized rats from DMH-induced carcinogenesis, and one of the mechanisms for this was due to estrogen’s inhibitive effects on blood vessel formation by downregulating VEGF and HIF-1α expressions. 1. Introduction Plenty of epidemiologic evidence demonstrated that estrogen might influence the incidence of colon cancer in women [1–3]. Colon cancer risk increased after menopause and decreased after hormone replacement treatment (HRT) [4]. Many hypotheses had been proposed and studied. Estrogen receptors were found in colon epithelium and the estrogen receptor beta was the dominant subtype [5]. On cell models, many studies had found that estrogen could affect the growth of cells originated from colon mucosa [6, 7]. On an animal model of rats induced by DMH, we have found that ovariectomy could promote colon tumor formation [8]. Since the angiogenesis was vital for tumorigenesis and the estrogen was a well-known vasoactive hormone, it was worth investigating whether estrogen could influence angiogenesis in the course of colon carcinogenesis. There were several types of vasculation during carcinogenesis, including angiogenesis, vasculogenesi, and vasculogenic mimicry. In early stage of cancer, the main type of vessel formation was angiogenesis [9], triggered by proangiogenic factors [10]. Among the pro-angiogenic factors, VEGF was the essential factor in angiogenesis [11, 12]. In the present study, we studied the effects of estrogen on the microvessel density (MVD) and the expression of VEGF and its main upstream regulator HIF-1α. 2. Material and

References

[1]  F. Al-Azzawi and M. Wahab, “Estrogen and colon cancer: current issues,” Climacteric, vol. 5, no. 1, pp. 3–14, 2002.
[2]  L. A. Ries, P. A. Wingo, D. S. Miller, et al., “The annual report to the nation on the status of cancer, with a special section on colorectal cancer,” Cancer, vol. 88, no. 10, pp. 398–424, 1997.
[3]  J. J. DeCosse, S. S. Ngoi, J. S. Jacobson, and W. J. Cennerazzo, “Gender and colorectal cancer,” European Journal of Cancer Prevention, vol. 2, no. 2, pp. 105–115, 1993.
[4]  F. Grodstein, P. A. Newcomb, and M. J. Stampfer, “Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis,” American Journal of Medicine, vol. 106, no. 5, pp. 574–582, 1999.
[5]  J. Raju, A. Bielecki, D. Caldwell et al., “Soy isoflavones modulate azoxymethane-induced rat colon carcinogenesis exposed pre- and postnatally and inhibit growth of DLD-1 human colon adenocarcinoma cells by increasing the expression of estrogen receptor-β,” Journal of Nutrition, vol. 139, no. 3, pp. 474–481, 2009.
[6]  H. R. Wilkins, K. Doucet, V. Duke, A. Morra, and N. Johnson, “Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2,” Tumor Biology, vol. 31, no. 1, pp. 16–22, 2010.
[7]  C. C. Weige, K. F. Allred, and C. D. Allred, “Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon,” Cancer Research, vol. 69, no. 23, pp. 9118–9124, 2009.
[8]  F. Xu, G. Wang, K. Cai, R. Zhai, and S. Tang, “Effects of ovariectomy on microsatellite instability in rat colon tumors induced by 1,2-dimethylhydrazine,” Molecular Biology Reports, vol. 37, no. 3, pp. 1397–1401, 2010.
[9]  P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005.
[10]  G. N. Naumov, L. A. Akslen, and J. Folkman, “Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch,” Cell Cycle, vol. 5, no. 16, pp. 1779–1787, 2006.
[11]  F. Shojaei and N. Ferrara, “Antiangiogenic therapy for cancer: an update,” Cancer Journal, vol. 13, no. 6, pp. 345–348, 2007.
[12]  N. Ferrara, “Vascular endothelial growth factor: basic science and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp. 581–611, 2004.
[13]  T. Ertekin, N. Ekinci, O. Karaca, et al., “Effect of angiostatin on 1, 2-dimethylhydrazine-induced colon cancer in mice,” Toxicol Ind Health, vol. 29, no. 6, pp. 490–497, 2012.
[14]  N. Thurnherr, E. E. Deschner, E. H. Stonehill, and M. Lipkin, “Induction of adenocarcinomas of the colon in mice by weekly injections of 1,2-dimethylhydrazine,” Cancer Research, vol. 33, no. 5, pp. 940–945, 1973.
[15]  P. Smirnoff, Y. Liel, J. Gnainsky, S. Shany, and B. Schwartz, “The protective effect of estrogen against chemically induced murine colon carcinogenesis is associated with decreased CpG island methylation and increased mRNA and protein expression of the colonie vitamin D receptor,” Oncology Research, vol. 11, no. 6, pp. 255–264, 1999.
[16]  N. Weidner, J. P. Semple, W. R. Welch, and J. Folkman, “Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma,” The New England Journal of Medicine, vol. 324, no. 1, pp. 1–8, 1991.
[17]  D. W. Rosenberg, C. Giardina, and T. Tanaka, “Mouse models for the study of colon carcinogenesis,” Carcinogenesis, vol. 30, no. 2, pp. 183–196, 2009.
[18]  R. T. Chlebowski, J. Wactawski-Wende, C. Ritenbaugh et al., “Estrogen plus progestin and colorectal cancer in postmenopausal women,” The New England Journal of Medicine, vol. 350, no. 10, pp. 991–1004, 2004.
[19]  V. Martineti, L. Picariello, I. Tognarini et al., “ERβ is a potent inhibitor of cell proliferation in the HCT8 human colon cancer cell line through regulation of cell cycle components,” Endocrine-Related Cancer, vol. 12, no. 2, pp. 455–469, 2005.
[20]  Y. Qiu, C. E. Waters, A. E. Lewis, M. J. S. Langman, and M. C. Eggo, “Oestrogen-induced apoptosis in colonocytes expressing oestrogen receptor β,” Journal of Endocrinology, vol. 174, no. 3, pp. 369–377, 2002.
[21]  J. Cheng, E. J. Lee, L. D. Madison, and G. Lazennec, “Expression of estrogen receptor β in prostate carcinoma cells inhibits invasion and proliferation and triggers apoptosis,” FEBS Letters, vol. 566, no. 1-3, pp. 169–172, 2004.
[22]  O. Treeck, G. Pfeiler, D. Mitter, C. Lattrich, G. Piendl, and O. Ortmann, “Estrogen receptor β1 exerts antitumoral effects on SK-OV-3 ovarian cancer cells,” Journal of Endocrinology, vol. 193, no. 3, pp. 421–433, 2007.
[23]  J. Hartman, K. Lindberg, A. Morani, J. Inzunza, A. Str?m, and J.-?. Gustafsson, “Estrogen receptor β inhibits angiogenesis and growth of T47D breast cancer xenografts,” Cancer Research, vol. 66, no. 23, pp. 11207–11213, 2006.
[24]  J. Nakamura, A. Savinov, Q. Lu, and A. Brodie, “Estrogen regulates vascular endothelial growth/permeability factor expression in 7,12-dimethylbenz(a)anthracene-induced rat mammary tumors,” Endocrinology, vol. 137, no. 12, pp. 5589–5596, 1996.
[25]  A. A. Kazi and R. D. Koos, “Estrogen-induced activation of hypoxia-inducible factor-1α, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway,” Endocrinology, vol. 148, no. 5, pp. 2363–2374, 2007.
[26]  P. Mak, I. Leav, B. Pursell et al., “ERβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for gleason grading,” Cancer Cell, vol. 17, no. 4, pp. 319–332, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133