全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Interactive Educational Diabetes Simulations Using the World Wide Web: An Experience of More Than 15 Years with AIDA Online

DOI: 10.1155/2014/692893

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24?hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored “virtual diabetic patients” on the internet or create new “patients” with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online’s functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required. 1. Introduction AIDA v4 (accessible freely at http://www.2aida.org) is a downloadable program that permits the interactive simulation of plasma insulin and blood glucose (BG) profiles for teaching/demonstration/self-learning/research purposes [1]. The software incorporates a compartmental/physiological model describing glucose-insulin interaction in insulin-dependent diabetic patients (lacking endogenous insulin secretion). The graphical interface of the downloadable software allows nonspecialist users to interact with the model. AIDA v4 permits the effects of insulin dosage and dietary adjustments to be simulated for a typical patient’s BG profile, with the working hypothesis being that patients, relatives, students and health-care professionals (HCPs) should be able to experience metabolic adjustments without risk of hypoglycaemia. AIDA v4 also incorporates a knowledge-based system that can suggest changes in insulin dose for users unsure about what to simulate next [2, 3]. Although a range of other interactive simulation programs of glucose-insulin interaction in diabetes have been described in the literature [4–12], to date, most of these do not seem to have been distributed so widely via the internet or been made particularly

References

[1]  E. D. Lehmann and T. Deutsch, “A physiological model of glucose-insulin interaction,” in Proceedings of the IEEE EMBS 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, J. H. Nagel and W. M. Smith, Eds., vol. 13, no. 5, pp. 2274–2275, November 1991.
[2]  E. D. Lehmann and T. Deutsch, “A physiological model of glucose-insulin interaction in type 1 diabetes mellitus,” Journal of Biomedical Engineering, vol. 14, no. 3, pp. 235–242, 1992.
[3]  E. D. Lehmann, T. Deutsch, and D. Broad, AIDA: An Educational Simulator for Insulin Dosage and Dietary Adjustment in Diabetes, British Diabetic Association, London, UK, 1997.
[4]  M. Berger and D. Rodbard, “Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection,” Diabetes Care, vol. 12, no. 10, pp. 725–736, 1989.
[5]  W. I. Sivitz, P. C. Davidson, D. Steed, B. Bode, and P. Richardson, “Computer-assisted instruction in intense insulin therapy using a mathematical model for clinical simulation with a clinical algorithm and flow sheet,” The Diabetes Educator, vol. 15, no. 1, pp. 77–79, 1989.
[6]  E. Biermann and H. Mehnert, “DIABLOG: a simulation program of insulin-glucose dynamics for education of diabetics,” Computer Methods and Programs in Biomedicine, vol. 32, no. 3-4, pp. 311–318, 1990.
[7]  J. Hedbrant, J. Ludvigsson, and K. Nordenskjold, “Sarimner: a computer model of diabetes physiology for education of physicians and patients,” Diabetes Research and Clinical Practice, vol. 14, no. 2, pp. 113–122, 1991.
[8]  A. Rutscher, E. Salzsieder, and U. Fischer, “KADIS: model-aided education in type I diabetes,” Computer Methods and Programs in Biomedicine, vol. 41, no. 3-4, pp. 205–215, 1994.
[9]  E. Biermann, “DIACATOR: simulation of metabolic abnormalities of type II diabetes mellitus by use of a personal computer,” Computer Methods and Programs in Biomedicine, vol. 41, no. 3-4, pp. 217–229, 1994.
[10]  E. D. Lehmann, “Interactive educational simulators in diabetes care,” Medical Informatics, vol. 22, no. 1, pp. 47–76, 1997.
[11]  E. D. Lehmann, “Usage of a diabetes simulation system for education via the internet,” International Journal of Medical Informatics, vol. 69, no. 1, pp. 63–69, 2003, (letter).
[12]  S. Plougmann, O. K. Hejlesen, and D. A. Cavan, “DiasNet—a diabetes advisory system for communication and education via the internet,” International Journal of Medical Informatics, vol. 64, no. 2-3, pp. 319–330, 2001.
[13]  E. D. Lehmann, T. Deutsch, E. R. Carson, and P. H. Sonksen, “AIDA: an interactive diabetes advisor,” Computer Methods and Programs in Biomedicine, vol. 41, no. 3-4, pp. 183–203, 1994.
[14]  E. D. Lehmann, T. Deutsch, E. R. Carson, and P. H. Sonksen, “Combining rule-based reasoning and mathematical modelling in diabetes care,” Artificial Intelligence in Medicine, vol. 6, no. 2, pp. 137–160, 1994.
[15]  E. D. Lehmann, I. Hermanyi, and T. Deutsch, “Retrospective validation of a physiological model of glucose-insulin interaction in type 1 diabetes mellitus,” Medical Engineering & Physics, vol. 16, pp. 193–202, 1994, Erratum in: Medical Engineering & Physics, vol. 16, pp. 351-352, 1994.
[16]  R. M. Felder and L. K. Silverman, “Learning and teaching styles in engineering education,” Engineering Education, vol. 78, pp. 674–681, 1988.
[17]  C. Meyers and T. B. Jones, Promoting Active Learning: Strategies for the College Classroom, Jossey-Bass, San Francisco, Calif, USA, 1993.
[18]  R. E. Mayer, Educational Psychology: A Cognitive Approach, Little Brown, Boston, Mass, USA, 1987.
[19]  E. Weal, “Multimedia drives educational excellence,” in The World of Macintosh Multimedia, pp. 22–26, 1994.
[20]  S. Fifield and R. Peifer, “Enhancing lecture presentations in introductory biology with computer-based multimedia,” College Science Teaching, vol. 24, pp. 235–239, 1994.
[21]  A. S. Hale, S. M. Blanchard, and J. C. Walker, “Multimedia: its dramatic effects unfold via internet,” Resource, vol. 31, pp. 13–14, 1995.
[22]  T. S. Pool, S. M. Blanchard, and A. S. Hale, “From over the internet—users discuss a new direction for learning,” TechTrends, vol. 40, no. 1, pp. 24–28, 1995.
[23]  J. H. Wells, S. M. Blanchard, and T. Richard, “Multiple approaches to Internet-based instruction in biological engineering,” in Proceedings of the 26th Annual Conference on Frontiers in Education (FIE '96), Paper 8c5.1, pp. 1018–1022, November 1996.
[24]  N. Washington and M. Parnianpour, “Using CAI to accomodate a variety of learning styles in a biomechanics course,” Biomedical Sciences Instrumentation, vol. 33, pp. 41–46, 1997.
[25]  S. M. Blanchard, R. R. Gotwals, E. D. Lehmann, and R. P. Rohrbach, “WWW-based senior design projects,” in Proceedings of the American Society for Engineering Education (ASEE) Annual Conference, (abstract), Seattle, Wash, USA, June 1998.
[26]  The Java Tutorials, http://docs.oracle.com/javase/tutorial.
[27]  An Introduction to Server Side Processing, http://www.realfreewebsites.com/articles/an-introduction-to-server-side-processing.
[28]  J. Ireson-Paine, “How to connect educational programs to the Web,” 1998, http://www.j-paine.org/uminho/talk.html.
[29]  M. Haag, L. Maylein, F. J. Leven, B. T?nshoff, and R. Haux, “Web-based training: a new paradigm in computer-assisted instruction in medicine,” International Journal of Medical Informatics, vol. 53, no. 1, pp. 79–90, 1999.
[30]  The Perl Programming Language, http://www.perl.org.
[31]  Perl, http://www.wikipedia.org/wiki/Perl.
[32]  J. R. Guyton, R. O. Foster, J. S. Soeldner et al., “A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin release,” Diabetes, vol. 27, no. 10, pp. 1027–1042, 1978.
[33]  Gnuplot version 4.6, http://www.gnuplot.info.
[34]  D. K. DeWolf, C. A. Novotny, and E. D. Lehmann, “Insulin inhibitors’ on-line simulator,” in World Wide Web Accessible Glucose and Insulin Computer Model, D. DeWolf, C. Novotny, B. Gotwals, E. Lehmann, and S. Blanchard, Eds., Senior Design Project, Internal Report, North Carolina State University, Raleigh, NC, USA, 1997.
[35]  Apache: HTTP server project, http://httpd.apache.org/ABOUT_APACHE.html.
[36]  E. D. Lehmann, D. K. DeWolf, C. A. Novotny, R. R. Gotwals Jr., R. P. Rohrbach, and S. M. Blanchard, “Dynamic interactive educational diabetes simulations using the World Wide Web,” Diabetes Technology & Therapeutics, vol. 3, pp. A17–A20, 2001, (abstract).
[37]  Shodor Education Foundation, http://www.wikipedia.org/wiki/Shodor_Education_Foundation.
[38]  E. D. Lehmann, “The freeware AIDA interactive educational diabetes simulator—http://www.2aida.org—(2) simulating glycosylated haemoglobin (Hb ) levels in AIDA v4.3,” Medical Science Monitor, vol. 7, no. 3, pp. 516–525, 2001.
[39]  E. D. Lehmann, “Simulating glycosylated hemoglobin (Hb ) levels in diabetes using an interactive educational virtual diabetes patient simulator,” Diabetes Technology and Therapeutics, vol. 3, no. 3, pp. 517–524, 2001.
[40]  D. M. Nathan, D. E. Singer, K. Hurxthal, and J. D. Goodson, “The clinical information value of the glycosylated hemoglobin assay,” The New England Journal of Medicine, vol. 310, no. 6, pp. 341–346, 1984.
[41]  S. M. Blanchard, C. A. Novotny, D. K. DeWolf, E. D. Lehmann, R. R. Gotwals Jr., and R. P. Rohrbach, “AIDA on-line: a glucose and insulin simulator on the WWW,” in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '98), H. K. Chang and Y. T. Zhang, Eds., vol. 20, pp. 1159–1162, IEEE, Piscataway, NJ, USA, 1998.
[42]  E. D. Lehmann and T. Deutsch, “Computer assisted diabetes care: a 6-year retrospective,” Computer Methods and Programs in Biomedicine, vol. 50, no. 3, pp. 209–230, 1996.
[43]  E. D. Lehmann and T. Deutsch, “Compartmental models for glycaemic prediction and decision-support in clinical diabetes care: promise and reality,” Computer Methods and Programs in Biomedicine, vol. 56, no. 2, pp. 193–204, 1998.
[44]  E. D. Lehmann, “User reviews of “AIDA on-line”—a web-based interactive educational diabetes simulator,” Diabetes Technology & Therapeutics, vol. 2, no. 2, pp. 329–342, 2000.
[45]  E. D. Lehmann, “Further user comments regarding usage of an interactive educational diabetes simulator (AIDA),” Diabetes Technology & Therapeutics, vol. 4, no. 1, pp. 121–135, 2002.
[46]  K. Reed and E. D. Lehmann, “Interactive educational diabetes/insulin tutorial at http://www.2aida.info,” Diabetes Technology and Therapeutics, vol. 8, no. 1, pp. 126–137, 2006.
[47]  D. K. DeWolf, Evaluation of AIDA on-line: A Web-Based Diabetes Software Simulator for Medical Student Self-Education, University of North Carolina at Chapel Hill, Department of Biomedical Engineering, Chapel Hill, NC, USA, 2000.
[48]  Why There Are No GIF Files on GNU Web Pages, http://www.gnu.org/philosophy/gif.html.
[49]  R. Mendosa, 1999, AIDA On-Line. Review previously available from the American Diabetes Association website, http://www.mendosa.com/aida.htm.
[50]  “The virtual diabetic patient: AIDA on-line,” Diabetes/Metabolism Research & Reviews, vol. 15, p. 226, 1999.
[51]  Webwatch, “Diabetes Simulator,” May 2002, Independent user review of AIDA on-line. Hospital Doctor, http://www.hospital-doctor.net.
[52]  P. Tatti and E. D. Lehmann, “A randomised-controlled clinical trial methodology for evaluating the teaching utility of interactive educational diabetes simulators,” Diabetes, Nutrition and Metabolism, vol. 14, no. 1, pp. 1–17, 2001.
[53]  P. Tatti and E. D. Lehmann, “A prospective randomised-controlled pilot study for evaluating the teaching utility of interactive educational diabetes simulators,” Diabetes, Nutrition and Metabolism, vol. 16, no. 1, pp. 7–23, 2003.
[54]  E. D. Lehmann, S. S. Chatu, and S. S. H. Hashmy, “Retrospective pilot feedback survey of 200 users of the AIDA version 4 educational diabetes program. 1—Quantitative survey data,” Diabetes Technology and Therapeutics, vol. 8, no. 3, pp. 419–432, 2006.
[55]  E. D. Lehmann, C. Tarín, J. Bondia, E. Teufel, and T. Deutsch, “Incorporating a generic model of subcutaneous insulin absorption into the AIDA v4 diabetes simulator. 1. A prospective collaborative development plan,” Journal of Diabetes Science and Technology, vol. 1, pp. 423–435, 2007.
[56]  E. D. Lehmann, C. Tarín, J. Bondia, E. Teufel, and T. Deutsch, “Incorporating a generic model of subcutaneous insulin absorption into the AIDA v4 diabetes simulator. 2. Preliminary bench testing,” Journal of Diabetes Science and Technology, vol. 1, pp. 780–793, 2007.
[57]  E. D. Lehmann, C. Tarín, J. Bondia, E. Teufel, and T. Deutsch, “Incorporating a generic model of subcutaneous insulin absorption into the AIDA v4 diabetes simulator. 3. Early plasma insulin determinations,” Journal of Diabetes Science and Technology, vol. 3, no. 1, pp. 190–201, 2009.
[58]  E. D. Lehmann, C. Tarín, J. Bondia, E. Teufel, and T. Deutsch, “Development of AIDA v4.3b diabetes simulator: Technical upgrade to support incorporation of lispro, aspart, and glargine insulin analogues,” Journal of Electrical and Computer Engineering, vol. 2011, Article ID 427196, 17 pages, 2011.
[59]  Diabetes Control and Complications Trial Research Group, “The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 329, pp. 683–689, 1993.
[60]  DAFNE Study Group, “Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial,” British Medical Journal, vol. 325, no. 7367, pp. 746–751, 2002.
[61]  A. S?mann, I. Mühlhauser, R. Bender, C. Kloos, and U. A. Müller, “Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study,” Diabetologia, vol. 48, no. 10, pp. 1965–1970, 2005.
[62]  J. Knowles, H. Waller, C. Eiser, S. Heller, M. Lewis, and K. Price, “Paediatric DAFNE: development of a skills training curriculum for 11–16 year olds with type 1 diabetes,” Diabetic Medicine, vol. 22, supplement 2, pp. 104–115, 2005, P316 (abstract).
[63]  K. Howorka, J. Pumprla, M. Gabriel et al., “Normalization of pregnancy outcome in pregestational diabetes through functional insulin treatment and modular out-patient education adapted for pregnancy,” Diabetic Medicine, vol. 18, no. 12, pp. 965–972, 2001.
[64]  A. Palacio, E. D. Lehmann, and D. E. Olson, “Teaching diabetes to middle-school students with the www.2aida.net AIDA online diabetes software simulator,” Journal of Diabetes Science & Technology, vol. 1, pp. 106–115, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133