It is now well established that not all obese subjects are at increased risk of cardiometabolic complications; such patients are termed the metabolically healthy obese. Despite their higher-than-normal body fat mass, they are still insulin sensitive, with a favorable inflammatory and lipid profile and no signs of hypertension. It remains unclear which factors determine an individual's metabolic health. Adipose tissue is known to secrete multiple bioactive substances, called adipokines, that can contribute to the development of obesity-associated complications. The goal of this study was to determine whether the circulating adipokine profiles differs between metabolically healthy and metabolically unhealthy overweight and obese subjects, thereby obtaining data that could help to explain the link between obesity and its related cardiometabolic complications. We defined metabolic health in terms of several metabolic and inflammatory risk factors. The serum adiponectin levels were higher in the healthy group and showed a positive correlation with HDL cholesterol levels in the unhealthy group. There were no differences between the two groups in the levels of serum leptin, chemerin and orosomucoid. Accordingly, adiponectin might play a role in protecting against obesity-associated cardiometabolic derangements. More studies are needed to clarify the role of different chemerin isoforms in this system. 1. Introduction The prevalence of obesity is increasing worldwide, accompanied by a high incidence of type 2 diabetes (T2DM) and cardiovascular disease (CVD) [1]. Although there is convincing evidence that obesity is accompanied by unfavorable metabolic profiles, such as impaired glucose tolerance, dyslipidemia, elevated blood pressure, or low-grade systemic inflammation, this may not always be the case. Some obese individuals do not possess this constellation of metabolic abnormalities and have been termed the metabolically healthy (MH) obese [2, 3]. Several studies have shown that MH obese participants are not at an increased risk of developing CVD compared with healthy, normal-weight participants [4–7]; certainly, they are at lower risk than metabolically unhealthy obese participants [8]. However, these results are in contrast to the data from several studies reporting that excess weight, as determined by body mass index (BMI), was associated with the incidence of CVD, even after adjusting for traditional metabolic risk factors [9, 10]. Hence, it is likely that there is a direct effect of excess weight on the risk of CVD as a result of complex biological
References
[1]
F. B. Hu, W. C. Willett, T. Li, M. J. Stampfer, G. A. Colditz, and J. E. Manson, “Adiposity as compared with physical activity in predicting mortality among women,” The New England Journal of Medicine, vol. 351, no. 26, pp. 2694–2703, 2004.
[2]
M. Blüher, “The distinction of metabolically “healthy” from “unhealthy” obese individuals,” Current Opinion in Lipidology, vol. 21, no. 1, pp. 38–43, 2010.
[3]
M. Brochu, A. Tchernof, I. J. Dionne et al., “What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women?” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1020–1025, 2001.
[4]
G. Calori, G. Lattuada, L. Piemonti et al., “Prevalence, metabolic features, and prognosis of metabolically healthy obese italian individuals: the cremona study,” Diabetes Care, vol. 34, no. 1, pp. 210–215, 2011.
[5]
M. Hamer and E. Stamatakis, “Metabolically healthy obesity and risk of all-cause and cardiovascular disease mortality,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 7, pp. 2482–2488, 2012.
[6]
J. B. Meigs, P. W. F. Wilson, C. S. Fox et al., “Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease,” The Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 8, pp. 2906–2912, 2006.
[7]
Y. Song, J. E. Manson, J. B. Meigs, P. M. Ridker, J. E. Buring, and S. Liu, “Comparison of usefulness of body mass index versus metabolic risk factors in predicting 10-year risk of cardiovascular events in women,” American Journal of Cardiology, vol. 100, no. 11, pp. 1654–1658, 2007.
[8]
A. D. Ogorodnikova, M. Kim, A. P. McGinn, P. Muntner, U. Khan, and R. P. Wildman, “Incident cardiovascular disease events in metabolically benign obese individuals,” Obesity, vol. 20, no. 3, pp. 651–659, 2012.
[9]
A. J. Flint, F. B. Hu, R. J. Glynn et al., “Excess weight and the risk of incident coronary heart disease among men and women,” Obesity, vol. 18, no. 2, pp. 377–383, 2010.
[10]
H. B. Hubert, M. Feinleib, P. M. McNamara, and W. P. Castelli, “Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study,” Circulation, vol. 67, no. 5, pp. 968–977, 1983.
[11]
N. Ouchi, J. L. Parker, J. J. Lugus, and K. Walsh, “Adipokines in inflammation and metabolic disease,” Nature Reviews Immunology, vol. 11, no. 2, pp. 85–97, 2011.
[12]
M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” The Journal of the American Medical Association, vol. 282, no. 22, pp. 2131–2135, 1999.
[13]
A. D. Pradhan, J. E. Manson, N. Rifai, J. E. Buring, and P. M. Ridker, “C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus,” The Journal of the American Medical Association, vol. 286, no. 3, pp. 327–334, 2001.
[14]
A. Onat, G. Can, and G. Hergen?, “Serum C-reactive protein is an independent risk factor predicting cardiometabolic risk,” Metabolism, vol. 57, no. 2, pp. 207–214, 2008.
[15]
A. Koster, S. Stenholm, D. E. Alley et al., “Body fat distribution and inflammation among obese older adults with and without metabolic syndrome,” Obesity, vol. 18, no. 12, pp. 2354–2361, 2010.
[16]
G. Labruna, F. Pasanisi, C. Nardelli et al., “High leptin/adiponectin ratio and serum triglycerides are associated with an at-risk phenotype in young severely obese patients,” Obesity, vol. 19, no. 7, pp. 1492–1496, 2011.
[17]
C. M. Phillips, A. C. Tierney, P. Perez-Martinez, et al., “Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype,” Obesity, vol. 21, no. 1, pp. E154–E161, 2013.
[18]
W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, “Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge,” Clinical Chemistry, vol. 18, no. 6, pp. 499–502, 1972.
[19]
D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985.
[20]
R. P. Wildman, P. Muntner, K. Reynolds et al., “The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004),” Archives of Internal Medicine, vol. 168, no. 15, pp. 1617–1624, 2008.
[21]
A. D. Karelis and R. Rabasa-Lhoret, “Inclusion of C-reactive protein in the identification of metabolically healthy but obese (MHO) individuals,” Diabetes and Metabolism, vol. 34, no. 2, pp. 183–184, 2008.
[22]
N. Stefan, K. Kantartzis, J. Machann et al., “Identification and characterization of metabolically benign obesity in humans,” Archives of Internal Medicine, vol. 168, no. 15, pp. 1609–1616, 2008.
[23]
C. A. Aguilar-Salinas, E. García, L. Robles et al., “High adiponectin concentrations are associated with the metabolically healthy obese phenotype,” The Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 10, pp. 4075–4079, 2008.
[24]
C. M. Phillips, “Metabolically healthy obesity: definitions, determinants and clinical implications,” Reviews in Endocrine and Metabolic Disorders, vol. 14, no. 3, pp. 219–227, 2013.
[25]
M. W. Rajala and P. E. Scherer, “Minireview: the adipocyte—at the crossroads of energy homeostasis, inflammation, and atherosclerosis,” Endocrinology, vol. 144, no. 9, pp. 3765–3773, 2003.
[26]
A. A. Alfadda, R. M. Sallam, M. A. Chishti et al., “Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: adipose depot specificity and gender dimorphism,” Molecules and Cells, vol. 33, no. 6, pp. 591–596, 2012.
[27]
A. A. Alfadda, S. Fatma, M. A. Chishti et al., “Orosomucoid serum concentrations and fat depot-specific mRNA and protein expression in humans,” Molecules and Cells, vol. 33, no. 1, pp. 35–41, 2012.
[28]
A. P. Doumatey, A. R. Bentley, J. Zhou, et al., “Paradoxical hyperadiponectinemia is associated with the metabolically healthy obese (MHO) phenotype in African Americans,” Journal of Endocrinology and Metabolism, vol. 2, no. 2, pp. 51–65, 2012.
[29]
F. Ziemke and C. S. Mantzoros, “Adiponectin in insulin resistance: lessons from translational research,” American Journal of Clinical Nutrition, vol. 91, no. 1, 2010.
[30]
N. Satoh, M. Naruse, T. Usui et al., “Leptin-to-adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients,” Diabetes Care, vol. 27, no. 10, pp. 2488–2490, 2004.
[31]
K. Kotani, N. Sakane, K. Saiga, and Y. Kurozawa, “Leptin: adiponectin ratio as an atherosclerotic index in patients with type 2 diabetes: relationship of the index to carotid intima-media thickness,” Diabetologia, vol. 48, no. 12, pp. 2684–2686, 2005.
[32]
Y. C. Liao, K. W. Liang, W. J. Lee, et al., “Leptin to adiponectin ratio as a useful predictor for cardiac syndrome X,” Biomarkers, vol. 18, no. 1, pp. 44–50, 2013.
[33]
K. Bozaoglu, K. Bolton, J. McMillan et al., “Chemerin is a novel adipokine associated with obesity and metabolic syndrome,” Endocrinology, vol. 148, no. 10, pp. 4687–4694, 2007.
[34]
Y. S. Lee, J. W. Choi, I. Hwang et al., “Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation,” The Journal of Biological Chemistry, vol. 285, no. 29, pp. 22174–22185, 2010.
[35]
J. L. Rourke, H. J. Dranse, and C. J. Sinal, “Towards an integrative approach to understanding the role of chemerin in human health and disease,” Obesity Reviews, vol. 14, no. 3, pp. 245–262, 2013.
[36]
T. Fournier, N. Medjoubi-N, and D. Porquet, “Alpha-1-acid glycoprotein,” Biochimica et Biophysica Acta, vol. 1482, no. 1-2, pp. 157–171, 2000.