全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Soluble Form of Receptor for Advanced Glycation End Products Is Associated with Obesity and Metabolic Syndrome in Adolescents

DOI: 10.1155/2014/657607

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this cross-sectional study was to investigate the relationship between soluble form of receptor for advanced glycation end products (sRAGE), obesity, and metabolic syndrome (MetS) in adolescents. A total of 522 male and 561 female adolescents were enrolled into the final analyses. Anthropometric parameters, blood pressure, blood biochemistry, fasting insulin, and plasma sRAGE levels were measured. In males, sRAGE was significantly and inversely correlated with waist circumference (WC), body mass index (BMI), systolic blood pressure, triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and homeostasis model assessment-insulin resistance (HOMA-IR). Only WC and BMI were significantly and inversely correlated with sRAGE in females. Using linear regression analysis adjusting for age and gender, significant association was found between sRAGE and WC, BMI, TG, LDL-C, and HOMA-IR in adolescents of either gender ( ). This association was abolished when further adjusting BMI. In addition, sRAGE was significantly and inversely correlated with the increasing number of components of MetS in males ( for trend?=?0.006) but not in females ( for trend?=?0.422). In conclusion, plasma sRAGE is associated with obesity and MetS among adolescents. BMI may be the most important determinant of sRAGE levels in adolescents. 1. Introduction The metabolic syndrome (MetS), which includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia, all documented risk factors for cardiovascular disease (CVD), has become one of the major public health challenges in developed and developing countries. The increasing prevalence of the syndrome is associated with the global epidemic of obesity and diabetes [1]. The International Diabetes Federation (IDF) identifies central obesity, measured by waist circumference, as an obligatory finding for the diagnosis of MetS [2]. The causes of the MetS are multifactorial, stemming from complex genetic and environmental influences. Insulin resistance is believed to play a major role in the underlying pathophysiology of the MetS, possibly contributing to atherosclerosis and increasing the risk of glucose intolerance and diabetes [3]. However, the cellular and molecular bases for the pathologic phenomena occurring in the MetS have not been fully elucidated. Advanced glycation end products (AGE) are formed from proteins and peptides by nonenzymatic glycoxidation after contact with aldose sugars [4, 5]. AGEs are known to accumulate in the vessel wall, where they may act to alter the extracellular matrix, cell surface

References

[1]  R. H. Eckel, S. M. Grundy, and P. Z. Zimmet, “The metabolic syndrome,” The Lancet, vol. 365, no. 9468, pp. 1415–1428, 2005.
[2]  International Diabetes Federation, “The IDF consensus worldwide definition of the metabolic syndrome,” 2006, http://www.idf.org/webdata/docs/MetS_def_update2006.pdf.
[3]  G. M. Reaven, “Insulin resistance, cardiovascular disease, and the metabolic syndrome: how well do the emperor's clothes fit?” Diabetes Care, vol. 27, no. 4, pp. 1011–1012, 2004.
[4]  R. Singh, A. Barden, T. Mori, and L. Beilin, “Advanced glycation end-products: a review,” Diabetologia, vol. 44, no. 2, pp. 129–146, 2001.
[5]  A. M. Schmidt, O. Hori, J. Brett, S. D. Yan, J. L. Wautier, and D. Stern, “Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions,” Arteriosclerosis and Thrombosis, vol. 14, no. 10, pp. 1521–1528, 1994.
[6]  M. Brownlee, “Advanced protein glycosylation in diabetes and aging,” Annual Review of Medicine, vol. 46, pp. 223–234, 1995.
[7]  J. V. Valencia, M. Mone, J. Zhang, M. Weetall, F. P. Buxton, and T. E. Hughes, “Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE-BSA,” Diabetes, vol. 53, no. 3, pp. 743–751, 2004.
[8]  H. Koyama, H. Yamamoto, and Y. Nishizawa, “RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases,” Molecular Medicine, vol. 13, no. 11-12, pp. 625–635, 2007.
[9]  B. I. Hudson, E. Harja, B. Moser, and A. M. Schmidt, “Soluble levels of receptor for advanced glycation endproducts (sRAGE) and coronary artery disease: the next C-reactive protein?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 879–882, 2005.
[10]  D. Geroldi, C. Falcone, E. Emanuele et al., “Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension,” Journal of Hypertension, vol. 23, no. 9, pp. 1725–1729, 2005.
[11]  G. Basta, A. M. Sironi, G. Lazzerini et al., “Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein,” Journal of Clinical Endocrinology and Metabolism, vol. 91, no. 11, pp. 4628–4634, 2006.
[12]  C. Falcone, E. Emanuele, A. D'Angelo et al., “Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 1032–1037, 2005.
[13]  H. Koyama, T. Shoji, H. Yokoyama et al., “Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 12, pp. 2587–2593, 2005.
[14]  G. D. Norata, K. Garlaschelli, L. Grigore et al., “Circulating soluble receptor for advanced glycation end products is inversely associated with body mass index and waist/hip ratio in the general population,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 19, no. 2, pp. 129–134, 2009.
[15]  J. P. Strong, G. T. Malcom, C. A. McMahan et al., “Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the pathobiological determinants of atherosclerosis in youth study,” The Journal of the American Medical Association, vol. 281, no. 8, pp. 727–735, 1999.
[16]  N. F. Chu, E. B. Rimm, D. J. Wang, H. S. Liou, and S. M. Shieh, “Relationship between anthropometric variables and lipid levels among school children: the Taipei children heart study,” International Journal of Obesity, vol. 22, no. 1, pp. 66–72, 1998.
[17]  N. F. Chu, E. B. Rimm, D. J. Wang, H. S. Liou, and S. M. Shieh, “Clustering of cardiovascular disease risk factors among obese schoolchildren: the Taipei children heart study,” The American Journal of Clinical Nutrition, vol. 67, no. 6, pp. 1141–1146, 1998.
[18]  D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985.
[19]  P. Zimmet, G. Alberti, F. Kaufman et al., “The metabolic syndrome in children and adolescents,” The Lancet, vol. 369, no. 9579, pp. 2059–2061, 2007.
[20]  K. ?ebeková, V. Somoza, M. Jar?u?ková, A. Heidland, and L. Podracká, “Plasma advanced glycation end products are decreased in obese children compared with lean controls,” International Journal of Pediatric Obesity, vol. 4, no. 2, pp. 112–118, 2009.
[21]  H. Ueno, H. Koyama, T. Shoji et al., “Receptor for advanced glycation end-products (RAGE) regulation of adiposity and adiponectin is associated with atherogenesis in apoE-deficient mouse,” Atherosclerosis, vol. 211, no. 2, pp. 431–436, 2010.
[22]  S. E. Shoelson, J. Lee, and A. B. Goldfine, “Inflammation and insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 7, pp. 1793–1801, 2006.
[23]  M. Cornier, D. Dabelea, T. L. Hernandez et al., “The metabolic syndrome,” Endocrine Reviews, vol. 29, no. 7, pp. 777–822, 2008.
[24]  A. Tirosh, I. Shai, A. Afek et al., “Adolescent BMI trajectory and risk of diabetes versus coronary disease,” The New England Journal of Medicine, vol. 364, no. 14, pp. 1315–1325, 2011.
[25]  J. M. Brix, F. H?llerl, H. P. Kopp, G. H. Schernthaner, and G. Schernthaner, “The soluble form of the receptor of advanced glycation endproducts increases after bariatric surgery in morbid obesity,” International Journal of Obesity, vol. 36, no. 11, pp. 1412–1417, 2012.
[26]  N. Katakami, M. Matsuhisa, H. Kaneto et al., “Serum endogenous secretory RAGE level is an independent risk factor for the progression of carotid atherosclerosis in type 1 diabetes,” Atherosclerosis, vol. 204, no. 1, pp. 288–292, 2009.
[27]  K. Sebeková, Z. Krivo?íková, and M. Gajdo?, “Total plasma Nε-(carboxymethyl)lysine and sRAGE levels are inversely associated with a number of metabolic syndrome risk factors in non-diabetic young-to-middle-aged medication-free subjects,” Clinical Chemistry and Laboratory Medicine, vol. 52, no. 1, pp. 139–149, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133