全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Forest Fragments Surrounded by Sugar Cane Are More Inhospitable to Terrestrial Amphibian Abundance Than Fragments Surrounded by Pasture

DOI: 10.1155/2013/183726

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent years, there has been increasing interest in matrix-type influence on forest fragments. Terrestrial amphibians are good bioindicators for this kind of research because of low vagility and high philopatry. This study compared richness, abundance, and species composition of terrestrial amphibians through pitfall traps in two sets of semideciduous seasonal forest fragments in southeastern Brazil, according to the predominant surrounding matrix (sugar cane and pasture). There were no differences in richness, but fragments surrounded by sugar cane had the lowest abundance of amphibians, whereas fragments surrounded by pastures had greater abundance. The most abundant species, Rhinella ornata, showed no biometric differences between fragment groups but like many other amphibians sampled showed very low numbers of individuals in fragments dominated by sugar cane fields. Our data indicate that the sugar cane matrix negatively influences the community of amphibians present in fragments surrounded by this type of land use. 1. Introduction Species persistence in fragmented landscapes may heavily depend on their tolerance to the surrounding-environment matrix [1–3]. The surrounding matrix can influence resource availability [4], animal dispersion [5], habitat fragment occupation [2, 6], and also the distribution and population dynamics within the fragment [1, 7, 8]. Generally, the higher the structural similarity of the matrix with the fragment, the greater the gene flow and dispersion of animals [1], as well as the richness and abundance of mammals [9], birds [10], and amphibians [11]. The matrix importance to the response of species to fragmentation depends not only on its structural characteristics, but also species biology [12]. Amphibians are sensitive to environmental alterations, because most have a biphasic life cycle [13], permeable skin [14], low vagility [15], and strong philopatry [16]. Also, they have been suffering declines worldwide, mainly due to habitat loss, overutilization, and chytridiomycosis which is an infectious disease caused by fungus [17, 18]. In surveys focused on amphibians and matrices, there is predominance of studies with pastures. Deforestation for pasture establishment can lead to richness reduction and the predominance of generalist and terrestrial anurans [19]. The pasture matrix can also reduce reproductive success of Phyllomedusa tarsius [20], amphibian richness [21], and abundance [22]. Pastures negatively impact amphibians, especially large and terrestrial species whose eggs are deposited on land, but whose larvae

References

[1]  C. Gascon, T. E. Lovejoy, R. O. Bierregaard Jr. et al., “Matrix habitat and species richness in tropical forest remnants,” Biological Conservation, vol. 91, no. 2-3, pp. 223–229, 1999.
[2]  T. H. Ricketts, “The matrix matters: effective isolation in fragmented landscapes,” American Naturalist, vol. 158, no. 1, pp. 87–99, 2001.
[3]  E. B. Viveiros de Castro and F. A. S. Fernandez, “Determinants of differential extinction vulnerabilities of small mammals in Atlantic forest fragments in Brazil,” Biological Conservation, vol. 119, no. 1, pp. 73–80, 2004.
[4]  T. D. Sisk, N. M. Haddad, and P. R. Ehrlich, “Bird assemblages in patchy woodlands: modeling the effects of edge and matrix habitats,” Ecological Applications, vol. 7, no. 4, pp. 1170–1180, 1997.
[5]  O. Berry, M. D. Tocher, D. M. Gleeson, and S. D. Sarre, “Effect of vegetation matrix on animal dispersal: genetic evidence from a study of endangered skinks,” Conservation Biology, vol. 19, no. 3, pp. 855–864, 2005.
[6]  Y. Haila, “A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology,” Ecological Applications, vol. 12, no. 2, pp. 321–334, 2002.
[7]  J. R. Malcolm, The small mammals of Amazonian forest fragments: pattern and process [Ph.D. thesis], University of Florida, Gainesville, Fla, USA, 1991.
[8]  J. I. Watling, A. J. Nowakowski, M. A. Donnelly, and J. L. Orrock, “Meta-analysis reveals the importance of matrix composition for animals in fragmented habitat,” Global Ecology and Biogeography, vol. 20, no. 2, pp. 209–217, 2011.
[9]  M. J. Brady, C. A. McAlpine, H. P. Possingham, C. J. Miller, and G. S. Baxter, “Matrix is important for mammals in landscapes with small amounts of native forest habitat,” Landscape Ecology, vol. 26, no. 5, pp. 617–628, 2011.
[10]  J. Mohd-Azlan and M. J. Lawes, “The effect of the surrounding landscape matrix on mangrove bird community assembly in north Australia,” Biological Conservation, vol. 144, no. 9, pp. 2134–2141, 2011.
[11]  G. Santos-Barrera and J. N. Urbina-Cardona, “The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes,” Revista Mexicana de Biodiversidad, vol. 82, no. 2, pp. 679–687, 2011.
[12]  M. Antongiovanni and J. P. Metzger, “Influence of matrix habitats on the occurrence of insectivorous bird species in Amazonian forest fragments,” Biological Conservation, vol. 122, no. 3, pp. 441–451, 2005.
[13]  W. E. Duellman and L. Trueb, Biology of Amphibians, The Johns Hopkins University Press, Baltimore, MD, USA, 1994.
[14]  L. J. Vitt and J. P. Caldwell, “Spacing, movements, and orientation,” in Herpetology: An Introductory Biology of Amphibians and Reptiles, L. J. Vitt and J. P. Caldwell, Eds., pp. 217–238, Academic Press, San Diego, Calif, USA, 2009.
[15]  R. D. Semlitsch and T. J. Ryan, “Migration, amphibian,” in The Encyclopedia of Reproduction, E. Knobil and J. D. Neill, Eds., pp. 221–227, Academic Press, New York, NY, USA, 1998.
[16]  J. H. K. Pechmann, D. E. Scott, R. D. Semlitsch, J. P. Caldwell, L. J. Vitt, and J. W. Gibbons, “Declining amphibian populations: the problem of separating human impacts from natural fluctuations,” Science, vol. 253, no. 5022, pp. 892–895, 1991.
[17]  S. N. Stuart, J. S. Chanson, N. A. Cox et al., “Status and trends of amphibian declines and extinctions worldwide,” Science, vol. 306, no. 5702, pp. 1783–1786, 2004.
[18]  K. R. Lips, F. Brem, R. Brenes et al., “Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3165–3170, 2006.
[19]  R. A. Silva, I. A. Martins, and D. D. C. Rossa-Feres, “Environmental heterogeneity: anuran diversity in homogeneous environments,” Zoologia, vol. 28, no. 5, pp. 610–618, 2011.
[20]  S. Neckel-Oliveira, “Effects of landscape change on clutches of Phyllomedusa tarsius, a neotropical treefrog,” Biological Conservation, vol. 118, no. 1, pp. 109–116, 2004.
[21]  P. J. Isaacs Cubides and J. N. Urbina Cardona, “Anthropogenic disturbance and edge effects on anuran assemblages inhabiting cloud forest fragments in Colombia,” Natureza a Conservacao, vol. 9, no. 1, pp. 39–46, 2011.
[22]  J. N. Urbina-Cardona, M. Olivares-Pérez, and V. H. Reynoso, “Herpetofauna diversity and microenvironment correlates across a pasture-edge-interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico,” Biological Conservation, vol. 132, no. 1, pp. 61–75, 2006.
[23]  E. Pineda and G. Halffter, “Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico,” Biological Conservation, vol. 117, no. 5, pp. 499–508, 2004.
[24]  G. M. Drummond, C. S. Martins, A. B. M. Machado, F. A. Sebaio, and Y. Antonini, Biodiversidade em Minas Gerais: um atlas para sua conserva??o, Funda??o Biodiversitas, Belo Horizonte, Brazil, 2005.
[25]  F. T. Martins, M. H. Santos, M. Polo, and L. C. A. Barbosa, “Varia??o química do óleo essencial de Hyptis suaveolens (L.) Poit., sob condi??es de cultivo,” Química Nova, vol. 29, pp. 1203–1209, 2006.
[26]  J. P. R. Capobianco, “Situa??o atual e perspectivas para a conserva??o da Mata Atlantica,” in Aspectos jurídicos da prote??o da Mata Atlantica, A. Lima, Ed., pp. 9–15, Instituto Socioambiental, S?o Paulo, Brazil, 2001.
[27]  Funda??o SOS Mata Atlantica and Instituto Nacional de Pesquisas Espaciais, “Atlas dos remanescentes florestais da Mata Atlantica, 2008–2010,” 2012, http://www.inpe.br/noticias/arquivos/pdf/atlasrelatoriofinal.pdf.
[28]  IBGE, Banco de Dados Agregados. Sistema IBGE de Recupera??o Automática (SIDRA), 2012, http://www.sidra.ibge.gov.br/.
[29]  K. Mcgarigal and B. Marks, FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Ore, USA, 1994.
[30]  C. C. Cortez, A. M. Suárez-Mayorga, and F. J. López-López, “Preparación y preservación de material científico,” in Técnicas de inventario y monitoreo para los anfíbios de la región tropical andina, A. Angulo, J. V. Rueda-Almonacid, J. V. Rodríguez-Mahecha, and E. La Marca, Eds., pp. 173–221, Panamericana Formas e Impresos S.A., Bogotá, Colombia, 2006.
[31]  M. E. V. Calleffo, “Anfíbios,” in Técnicas de coleta e prepara??o de vertebrados, P. Auricchio, Ed., pp. 43–74, 2002.
[32]  F. L. Franco, M. G. Salomao, and P. Auricchio, “Répteis,” in Técnicas de coleta e prepara??o de vertebrados, P. Auricchio and M. G. Salomao, Eds., pp. 75–11, Instituto Pau e de História Natural, Aruja, Brazil, 2002.
[33]  N. J. Gotelli and R. K. Colwell, “Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness,” Ecology Letters, vol. 4, no. 4, pp. 379–391, 2001.
[34]  R. K. Colwell, “EstimateS: statistical estimation of species richness and shared species from sample, version 8.2,” 2012, http://purl.oclc.org/estimates.
[35]  A. S. Melo, R. A. S. Pereira, A. J. Santos et al., “Comparing species richness among assemblages using sample units: why not use extrapolation methods to standardize different sample sizes?” Oikos, vol. 101, no. 2, pp. 398–410, 2003.
[36]  J. I. Watling and M. A. Donnelly, “Multivariate correlates of extinction proneness in a naturally fragmented landscape,” Diversity and Distributions, vol. 13, no. 4, pp. 372–378, 2007.
[37]  A. E. Magurran, Measuring Biological Diversity, Blackwell Publishing, Oxford, UK, 2004.
[38]  M. V. Lomolino and D. R. Perault, “Island biogeography and landscape ecology of mammals inhabiting fragmented, temperate rain forests,” Global Ecology and Biogeography, vol. 10, no. 2, pp. 113–132, 2001.
[39]  D. S. Moen and J. J. Wiens, “Phylogenetic evidence for competitively driven divergence: body-size evolution in caribbean treefrogs (Hylidae: Osteopilus),” Evolution, vol. 63, no. 1, pp. 195–214, 2009.
[40]  M. A. L. Zuffi, S. Fornasiero, R. Picchiotti, P. Poli, and M. Mele, “Adaptive significance of food income in European snakes: body size is related to prey energetics,” Biological Journal of the Linnean Society, vol. 100, no. 2, pp. 307–317, 2010.
[41]  A. A. Giaretta, K. G. Facure, R. J. Sawaya, J. H. M. de Meyer, and N. Chemin, “Diversity and abundance of litter frogs in a montane forest of southeastern Brazil: seasonal and altitudinal changes,” Biotropica, vol. 31, no. 4, pp. 669–674, 1999.
[42]  C. F. B. Haddad and A. S. Abe, “Anfíbios e Répteis,” Workshop Mata Atlantica e Campos Sulinos, 1999, http://fat.org.br/workshop/mata.atlantica/BR/rfinais/rt_anfibios.
[43]  T. G. Santos, D. C. Rossa-Feres, and L. Casatti, “Diversidade e distribui??o espa?o-temporal de anuros em regi?o com pronunciada esta??o seca no sudeste do Brasil,” Iheringia Série Zoologia, vol. 97, pp. 37–49, 2007.
[44]  M. Denoel, G. Dzukic, and M. L. Kalezic, “Effects of widespread fish introductions on paedomorphic newts in Europe,” Conservation Biology, vol. 19, no. 1, pp. 162–170, 2005.
[45]  B. A. Bancroft, N. J. Baker, and A. R. Blaustein, “A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival,” Conservation Biology, vol. 22, no. 4, pp. 987–996, 2008.
[46]  M. R. Preest and F. H. Pough, “Effects of body temperature and hydration state on organismal performance of toads, Bufo americanus,” Physiological and Biochemical Zoology, vol. 76, no. 2, pp. 229–239, 2003.
[47]  C. N. Spencer and F. R. Hauer, “Phosphorus and nitrogen dynamics in streams during a wildfire,” Journal of the North American Benthological Society, vol. 10, pp. 24–30, 1991.
[48]  G. W. Minshall, C. T. Robinson, and D. E. Lawrence, “Postfire responses of lotic ecosystems in Yellowstone National Park, USA,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 54, no. 11, pp. 2509–2525, 1997.
[49]  M. Santaella and L. A. D. Paes, “Utiliza??o do fogo em cultura de cana-de-a?úcar,” 2012, http://www.ipef.br/publicacoes/forum_incendios/cap02.pdf.
[50]  K. R. Russell, D. H. van Lear, and D. C. Guynn Jr., “Prescribed fire effects on herpetofauna: review and management implications,” Wildlife Society Bulletin, vol. 27, no. 2, pp. 374–384, 1999.
[51]  J. K. Smith, “Wildland fire in ecosystems: effects of fire on fauna,” Tech. Rep. RMRS-42-1, USDA Forest Service General, 2000.
[52]  G. R. Friend, “Impact of fire on small vertebrates in mallee woodlands and heathlands of temperate Australia: a review,” Biological Conservation, vol. 65, no. 2, pp. 99–114, 1993.
[53]  R. Rossetto and A. D. Santiago, “Manejo do canavial,” Impactos do canavial, 2012, http://www.embrapa.br/.
[54]  C. A. Spadotto and M. A. F. Gomes, “Agrotóxicos no Brasil,” Impactos do canavial, 2012, http://www.embrapa.br/.
[55]  M. H. Boily, V. E. Bérubé, P. A. Spear, C. DeBlois, and N. Dassylva, “Hepatic retinoids of bullfrogs in relation to agricultural pesticides,” Environmental Toxicology and Chemistry, vol. 24, no. 5, pp. 1099–1106, 2005.
[56]  R. Altwegg and H.-U. Reyer, “Patterns of natural selection on size at metamorphosis in water frogs,” Evolution, vol. 57, no. 4, pp. 872–882, 2003.
[57]  G. S. Schuytema and A. V. Nebeker, “Comparative effects of ammonium and nitrate compounds on pacific treefrog and african clawed frog embryos,” Archives of Environmental Contamination and Toxicology, vol. 36, no. 2, pp. 200–206, 1999.
[58]  T. S. Vasconcelos and D. C. Rossa-Feres, “Diversidade, distribui??o espacial e temporal de anfíbios anuros (Amphibia, Anura) na regi?o noroeste do estado de S?o Paulo, Brasil,” Biota Neotropica, vol. 5, no. 2, pp. 1–14, 2005.
[59]  S. Neckel-Oliveira and C. Gascon, “Abundance, body size and movement patterns of a tropical treefrog in continuous and fragmented forests in the Brazilian Amazon,” Biological Conservation, vol. 128, no. 3, pp. 308–315, 2006.
[60]  F. R. Silva and D. C. Rossa-Feres, “The use of forest fragments by open-area anurans (Amphibia) in northwestern S?o Paulo State, Brazil,” Biota Neotropica, no. 7, pp. 141–148, 2007.
[61]  P. S. Bernarde and L. C. Macedo, “Impacto do desmatamento e forma??o de pastagens sobre a anurofauna de serapilheira em Rond?nia,” Iheringia Série Zoologia, vol. 98, pp. 454–459, 2008.
[62]  M. V. Garey and V. X. Silva, “Spatial and temporal distribution of anurans in an agricultural landscape in the Atlantic Semideciduous Forest of South American,” Journal of Herpetology, vol. 5, pp. 64–72, 2010.
[63]  F. R. Silva, J. P. Gibbs, and D. C. Rossa-Feres, “Breeding habitat and landscape correlates of frog diversity and abundance in a tropical agricultural landscape,” Wetlands, vol. 31, no. 6, pp. 1079–1087, 2011.
[64]  F. R. Silva, T. A. L. Oliveira, J. P. Gibbs, and D. C. Rossa-Feres, “An experimental assessment of landscape configuration effects on frog and toad abundance and diversity in tropical agro-savannah landscapes of southeastern Brazil,” Landscape Ecology, vol. 27, no. 1, pp. 87–96, 2012.
[65]  J. Zina, J. Ennser, S. C. P. Pinheiro, C. F. B. Haddad, and L. F. Toledo, “Taxocenose de anuros de uma mata semidecídua do interior do Estado de S?o Paulo e compara??es com outras taxocenoses do Estado, sudeste do Brasil,” Biota Neotropica, vol. 7, pp. 49–58, 2007.
[66]  F. R. da Silva, R. S. Santos, M. A. Nunes, and D. D. C. Rossa-Feres, “Anuran captured in pitfall traps in three agrossystems in northwestern S?o Paulo State, Brazil,” Biota Neotropica, vol. 9, no. 4, pp. 253–255, 2009.
[67]  M. Nelson, S. Silverstone, K. C. Reiss et al., “The impact of hardwood line-planting on tree and amphibian diversity in a secondary subtropical wet forest of Southeast Puerto Rico,” Journal of Sustainable Forestry, vol. 29, no. 5, pp. 503–516, 2010.
[68]  P. S. Bernarde and M. N. C. Kokubum, “Anurofauna do Município de Guararapes, Estado de S?o Paulo, Brasil (Amphibia: Anura),” Acta Biologica Leopoldensia, vol. 21, no. 1, pp. 89–97, 1999.
[69]  V. H. M. Prado, F. R. Silva, N. Y. N. Dias, J. S. R. Pires, and D. C. Rossa-Feres, “Anura, Esta??o Ecológica de Jataí, S?o Paulo state, southeastern Brazil,” Check List, vol. 5, pp. 495–502, 2009.
[70]  IBGE, “Censo agropecuário de 2006,” 2012, http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1064andid_pagina=1.
[71]  M. Dixo and V. K. Verdade, “Herpetofauna de serrapilheira da Reserva Florestal de Morro Grande, Cotia (SP),” Biota Neotropica, vol. 6, no. 2, pp. 1–20, 2006.
[72]  C. O. Araújo, T. H. Condez, and R. J. Sawaya, “Anfíbios anuros do Parque Estadual das Furnas do Bom Jesus, sudeste do Brasil, e suas rela??es com outras taxocenoses no Brasil,” Biota Neotropica, vol. 2, pp. 77–98, 2009.
[73]  R. A. Brassaloti, D. de Cerqueira Rossa-Feres, and J. Bertoluci, “Anuran fauna of the Semideciduous Forest of the Esta??o Ecológica dos Caetetus, Southeastern Brazil,” Biota Neotropica, vol. 10, no. 1, pp. 275–291, 2010.
[74]  M. R. Moura, A. P. Motta, V. D. Fernandes, and R. N. Feio, “Herpetofauna from Serra do Brigadeiro, an Atlantic Forest remain in the state of Minas Gerais, Southeastern Brazil,” Biota Neotropica, vol. 12, pp. 209–235, 2012.
[75]  J. Bertoluci, M. A. S. Canelas, C. C. Eisemberg, C. F. D. S. Palmuti, and G. G. Montingelli, “Herpetofauna of Esta??o Ambiental de Peti, an Atlantic Rainforest fragment of Minas Gerais State, southeastern Brazil,” Biota Neotropica, vol. 9, no. 1, pp. 147–156, 2009.
[76]  T. G. Santos, T. S. Vasconcelos, and C. F. B. Haddad, “The role of environmental heterogeneity in maintenance of anuran amphibian diversity of the Brazilian Mesophytic Semideciduous Forest,” in Tropical Forests, P. Sudarshana, M. Nageswara-Rao, and J. R. Soneji, Eds., chapter 7, pp. 119–138, InTech, 2012.
[77]  C. Both, R. Lingnau, A. Santos Jr., B. Madalozzo, L. P. Lima, and T. Grant, “Widespread occurrence of the American Bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil,” South America Journal of Herpetology, vol. 6, no. 2, pp. 127–134, 2011.
[78]  T. G. dos Santos, T. D. S. Vasconcelos, D. D. C. Rossa-Feres, and C. F. B. Haddad, “Anurans of a seasonally dry tropical forest: Morro do Diabo State Park, S?o Paulo state, Brazil,” Journal of Natural History, vol. 43, no. 15-16, pp. 973–993, 2009.
[79]  M. Dixo and M. Martins, “Are leaf-litter frogs and lizards affected by edge effects due to forest fragmentation in Brazilian Atlantic forest?” Journal of Tropical Ecology, vol. 24, no. 5, pp. 551–554, 2008.
[80]  A. M. Lawing and P. D. Polly, “Geometric morphometrics: recent applications to the study of evolution and development,” Journal of Zoology, vol. 280, no. 1, pp. 1–7, 2010.
[81]  J. W. Ribeiro-Junior and J. Bertoluci, “Anuros do cerrado da Esta??o Ecológica e da Floresta Estadual de Assis, sudeste do Brasil,” Biota Neotropica, vol. 9, no. 1, pp. 1–9, 2009.
[82]  M. Dixo, J. P. Metzger, J. S. Morgante, and K. R. Zamudio, “Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest,” Biological Conservation, vol. 142, no. 8, pp. 1560–1569, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133