Influence of Plant Diversity on the Numerical Response of Eriopis connexa (Coleoptera: Coccinellidae) to Changes in Cereal Aphid Density in Wheat Crops
Cereal aphids cause economic injury to wheat crops. In Argentina, Eriopis connexa is an indigenous ladybird. In the present study, the numerical response of E. connexa to changes in aphid density on wheat crops with high and low plant diversity was investigated. The study was carried out in Balcarce, Buenos Aires, Argentina, from September to December 2007 and 2008, on two wheat crops with either a higher plant diversity (HPD) with refuge strips or a lower plant diversity (LPD) without refuge strips. Crops were sampled every week and the abundance of aphids and E. connexa was recorded. The dominant aphid species were Schizaphis graminum, Metopolophium dirhodum, and Sitobion avenae. Eriopis connexa showed a linear increase in the numerical response to an increase in aphid density, which varied in space and time. The abundance of E. connexa increased in relation to the crop development and aphid population and was higher in the HPD than in the LPD system. This predator increased its reproductive numerical response only in 2008, with a significant liner response in the HPD system. This suggests that the potential of E. connexa as a predator of cereal aphids also increases directly in proportion to landscape vegetal diversity. 1. Introduction Cereal aphids (Hemiptera: Aphididae) are among the most important pests on wheat crops in the world, since they are found in all temperate regions and cropping systems and have the potential to reduce yields [1, 2]. Depending on the species and the year, aphids can cause economic damage by direct feeding, by injection of toxins that cause yellowing, stunted growth, curled leaves, and malformations, or by transmission of viruses that cause indirect plant injury [1–4]. As a result, aphid damage in wheat crops causes losses in yields and grain quality [5–11]. Insecticide application is the strategy selected by farmers to control aphids in wheat crops around the world. However, the frequent use of a wide range of pesticides has caused many side-effects, including loss of biodiversity, secondary pest outbreaks, the development of insect resistance to insecticides, residual toxicity, and suppression of natural enemies [12–14]. As a consequence, promoting the activity of predators and parasitoids in growing systems to maintain aphid populations below the economic injury level remains a desirable goal [15]. Several groups of natural enemies can control aphid populations in wheat crops, such as parasitoid wasps (Hymenoptera: mainly Aphidiidae) and a very large number of predators such as hoverfly larvae (Diptera: Syrphidae),
References
[1]
V. O. Sadras, A. Fereres, and R. H. Ratcliffe, “Wheat growth, yield and quality as affected by insect herbivores,” in Wheat: Ecology and Physiology of Yield Determination, E. H. Satorre and G. A. Slafer, Eds., pp. 183–211, Food Products Press, The Haworth Press, Binghamton, NY, USA, 1999.
[2]
H. F. van Emden and R. Harrington, Eds., Aphids as Crop Pests, CABI, Wallingford, UK, 2007.
[3]
R. H. Quintanilla, Pulgones: Características morfológicas y biológicas: Especies de mayor importancia agrícola, Hemisferio Sur, Buenos Aires, Argentina, 1976.
[4]
A. M. Vincini, A. N. López, and D. Sisti, Presencia del “pulgón de la avena” Rophalosiphum padi en el sudeste bonaerense, IPE, Prod. Veg. INTA, Balcarce, Argentina, 1982.
[5]
R. L. Carrillo, M. Z. Mellazo, and A. B. Pino, “Los áfidos Sitobium avenae (Fabricius) y Metopolophium dirhodum (Walk). Su influencia en el rendimiento, ubicación en la planta y sus enemigos naturales,” Agro Sur, vol. 2, no. 2, pp. 71–85, 1974.
[6]
C. Torres, C. Senigagliesi, R. Parisi, and A. Mottioli, “Incidencia del pulgón amarillo de los cereales Metopolophium dirhodum Walk en el cultivo de Trigo,” Informe Técnico 134, INTA, Estación experimental, 1976.
[7]
G. Lee, D. J. Stevens, S. Stokes, and S. D. Wratten, “Duration of cereal aphid populations and the effects on wheat yield and breadmaking quality,” Annals of Applied Biology, vol. 98, no. 2, pp. 169–178, 1981.
[8]
P. R. Holmes, “A field study of the predators of the grain aphid, Sitobion avenae (F.) ( Hemiptera: Aphididae), in winter wheat in Britain,” Bulletin of Entomological Research, vol. 74, no. 4, pp. 623–631, 1984.
[9]
R. W. Kieckhefer and B. H. Kantack, “Yield losses in winter grains caused by cereal aphids (Homoptera: Aphididae) in South Dakota,” Journal of Economic Entomology, vol. 81, pp. 317–321, 1988.
[10]
R. W. Kieckhefer and J. L. Gellner, “Yield losses in winter wheat caused by low-density cereal aphid populations,” Agronomy Journal, vol. 84, no. 2, pp. 180–183, 1992.
[11]
J. N. Oakley and K. F. A. Walters, “A field evaluation of different criteria for determining the need to treat winter wheat against the grain aphid Sitobion avenae and the rose-grain aphid Metopolophium dirhodum,” Annals of Applied Biology, vol. 124, no. 2, pp. 195–211, 1994.
[12]
R. G. van Driesche and T. S. Bellows, Biological Control, Chapman & Hall, New York, NY, USA, 1996.
[13]
D. Landis, F. D. Menalled, J. Lee, D. M. Carmona, and A. P. Valdez, “Habitat management to enhance biological control in IPM,” in Emerging Technologies for Integrated Pest Management: Concepts, Research and Implementation, G. G. Kenedy and T. B. Sutton, Eds., pp. 226–239, APS Press, St. Paul, Minn, USA, 2000.
[14]
A. E. Hajek, “Why use natural enemies?” in Natural Enemies: An Introduction to Biological Control, pp. 3–18, Cambridge University Press, Cambridge, UK, 2004.
[15]
A. K. Fiedler, D. A. Landis, and S. D. Wratten, “Maximizing ecosystem services from conservation biological control: the role of habitat management,” Biological Control, vol. 45, no. 2, pp. 254–271, 2008.
[16]
C. Salto, J. Lopez, I. Bertolaccini, and J. Imwinkelried, “Observaciones preliminares de las interacciones malezas-fitófagos-enemigos naturales en el área central de la Provincia de Santa Fe,” Gaceta Agronómica, vol. 12, no. 71, pp. 21–30, 1993.
[17]
M. J. Brewer and N. C. Elliott, “Biological control of cereal aphids in North America and mediating efects of host plant and habitat manipulations,” Annual Review of Entomology, vol. 49, pp. 219–242, 2004.
[18]
J. J. Obrycki and T. J. Kring, “Predaceous coccinellidae in biological control,” Annual Review of Entomology, vol. 43, pp. 295–321, 1998.
[19]
E. D. Saini, “Presencia de Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) en la provincia de Buenos Aires,” Aspectos Biológicos y Morfológicos. RIA, vol. 33, no. 1, pp. 151–160, 2004.
[20]
G. Martinoia, Fluctuación poblacional de pulgones (Hemiptera: Aphididae) y sus reguladores naturales (Coleoptera: Coccinellidae) en cultivos de papa con refugios vegetales y uso oportuno de plaguicidas [Tesis Magister Scientiae], Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina, 2008.
[21]
J. E. Gyenge, J. D. Edelstein, and C. E. Salto, “Efectos de la temperatura y la dieta en la biología de Eriopis connexa (Germar) (Coleoptera: Coccinellidae),” Anais da Sociedade Entomológica do Brasil, vol. 27, no. 3, pp. 345–356, 1998.
[22]
E. D. Saini and O. R. de Coll, “Clave para la identificación de los coccinélidos (Coleoptera) encontrados en yerba mate,” RIA, vol. 27, no. 2, pp. 231–241, 1996.
[23]
S. Eizaguirre, “Nueva especie del género Eriopis (Coleoptera: Coccinellidae),” Boletín de la SEA, no. 35, pp. 47–49, 2004.
[24]
C. S. Holling, “Principles of insect predation,” Annual Review of Entomology, vol. 6, pp. 163–182, 1961.
[25]
E. W. Evans, “Searching and reproductive behaviour of female aphidophagous ladybirds (Coleoptera: Coccinellidae): a review,” European Journal of Entomology, vol. 100, no. 1, pp. 1–10, 2003.
[26]
I. Bertolaccini, P. Andrada, and O. Quaino, “Efecto de franjas marginales en la atracción de Coccinellidae y Syrphidae, depredadores de áfidos en trigo, en la zona central de la provincia de Santa Fe, Argentina,” Agronomía Tropical, vol. 58, no. 3, pp. 267–276, 2008.
[27]
J. P. Harmon, A. R. Ives, J. E. Losey, A. C. Olson, and K. S. Rauwald, “Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions,” Oecologia, vol. 125, no. 4, pp. 543–548, 2000.
[28]
J. Lys and W. Nentwig, “Augmentation of beneficial arthropods by strip-management—4. Surface activity, movements and activity density of abundant carabid beetles in a cereal field,” Oecologia, vol. 92, no. 3, pp. 373–382, 1992.
[29]
J. A. Lys and W. Nentwig, “Improvement of the overwintering sites for Carabidae, Staphylinidae and Araneae by strip-management in a cereal field,” Pedobiología, vol. 38, no. 3, pp. 238–242, 1994.
[30]
D. M. Carmona and D. A. Landis, “Influence of refuge habitats and cover crops on seasonal activity-density of ground beetles (Coleoptera: Carabidae) in field crops,” Environmental Entomology, vol. 28, no. 6, pp. 1145–1153, 1999.
[31]
M. Jonsson, S. D. Wratten, D. A. Landis, and G. M. Gurr, “Recent advances in conservation biological control of arthropods by arthropods,” Biological Control, vol. 45, no. 2, pp. 172–175, 2008.
[32]
M. M. Gardiner, D. A. Landis, C. Gratton et al., “Landscape diversity enhances biological control of an introduced crop pest in the North-Central USA,” Ecological Applications, vol. 19, no. 1, pp. 143–154, 2009.
[33]
R. Isaacs, J. Tuell, A. Fiedler, M. Gardiner, and D. Landis, “Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants,” Frontiers in Ecology and the Environment, vol. 7, no. 4, pp. 196–203, 2009.
[34]
K. Ma, S. Hao, H. Zhao, and L. Kang, “Strip cropping wheat and alfalfa to improve the biological control of the wheat aphid Macrosiphum avenae by the mite Allothrombium ovatum,” Agriculture, Ecosystems and Environment, vol. 119, no. 1-2, pp. 49–52, 2007.
[35]
M. P. Díaz and C. G. Demétrio, Introducción a los Modelos Lineales Generalizados. Su Aplicación a las Ciencias Biológicas, Screen Edit, Córdoba, Spain, 1998.
[36]
SAS Institute Inc., SAS/STAT 9.2 User's Guide, SAS Institute Inc., Cary, NC, USA, 2008, http://support.sas.com/documentation/cdl/en/statuggenmod/61787/PDF/default/statuggenmod.pdf.
[37]
A. Langer and T. Hance, “Enhancing parasitism of wheat aphids through apparent competition: a tool for biological control,” Agriculture, Ecosystems and Environment, vol. 102, no. 2, pp. 205–212, 2004.
[38]
R. Beltrame and C. Salto, “Ammi majus L. y Foeniculum vulgare Miller como hospedantes de afidos y sus enemigos naturales,” Revista de la Facultad de Agronomía, Universidad Nacional Buenos Aires, vol. 20, no. 3, pp. 395–400, 2000.
[39]
A. Ferran and A. F. G. Dixon, “Foraging behaviour of ladybird larvae (Coleoptera: Coccinellidae),” European Journal of Entomology, vol. 90, no. 4, pp. 383–402, 1993.
[40]
A. F. G. Dixon and Y. Guo, “Egg and cluster size in ladybird beetles (Coleoptera: Coccinellidae): the direct and indirect effects of aphid abundance,” European Journal of Entomology, vol. 90, pp. 457–463, 1993.
[41]
J. Y. Xia, W. van der Werf, and R. Rabbinge, “Temperature and prey density on bionomics of Coccinella septempunctata (Coleoptera: Coccinellidae) feeding on Aphis gossypii (Homoptera: Aphididae) on cotton,” Environmental Entomology, vol. 28, no. 2, pp. 307–314, 1999.
[42]
G. J. K. Griffiths, J. M. Holland, A. Bailey, and M. B. Thomas, “Efficacy and economics of shelter habitats for conservation biological control,” Biological Control, vol. 45, no. 2, pp. 200–209, 2008.
[43]
J. L. Hemeptine, A. F. G. Dixon, J. L. Doucet, and J. E. Petersen, “Optimal foraging by hoverflies (Diptera: Syrphidae) and ladybird (Coleptera: Coccinellidae): mechanimisms,” European Journal of Entomology, vol. 90, pp. 451–455, 1993.
[44]
F. J. J. A. Bianchi and W. van der Werf, “Model evaluation of the function of prey in non-crop habitats for biological control by ladybeetles in agricultural landscapes,” Ecological Modelling, vol. 171, no. 1-2, pp. 177–193, 2004.