It is necessary to investigate techniques for monitoring structures under unknown earthquakes. For this purpose, an algorithm is proposed in this paper for the identification of structures and excitation of multi-story shear buildings with limited measurements of structural responses. The equation of motion of a multi-story shear building under ground motion is established in the absolute co-ordinate system, while the multi-story building is decomposed into substructures. A novel two-step Kalman estimator approach, which is not available in the previous literature, is proposed for the identification substructures and unknown ground motion with less computational effort. Then, for the purpose of intelligent structural monitoring, a new wireless sensor network is developed in this paper. The designed wireless sensor network has a two-level cluster-tree architecture. Hardware designs of the sensor unit and the cluster head are presented; especially the cluster head contains a low power digital signal processor with strong computing capacity. Thus, the wireless sensor network has the unique feature offers distributed computing at group level. Finally, the proposed algorithm is embedded into the wireless sensor network for intelligent structural monitoring and an experimental test shows the technique is effective for intelligent monitoring of multi-story buildings under unknown earthquakes. 1. Introduction In the past decades, many structural identification and structural damage detection algorithms have been proposed, for example, see [1, 2]. Since some structural external excitations such as earthquakes or wind forces cannot be accurately measured under actual operating conditions, it is necessary to investigate algorithms for structural identification and damage detection under unknown earthquake excitation. Also, in structural health monitoring, the knowledge of external excitation is very useful for the safety evolution of structures. Identification of structural parameters and unknown external excitation has been investigated by some researchers, for example, Wang and Haldar [3] developed iterative least squares approaches to identify simultaneously the structural parameters and ground motion of an earthquake. Chen and Li [4] proposed a statistical average algorithm for simultaneous estimation of structural parameters and earthquake-induced ground motion. Yang et al. presented several methods including extended Kalman filter with unknown excitation inputs (EKF-UI) [5] and the sequential nonlinear least square estimation (SNLSE) [6] for the
References
[1]
in Proceedings of the 4th International Conference on structural health monitoring of intelligent infrastructures, U. Meier, B. Havaranek, and M. Motavalli, Eds., Zurich, Switzerland, 2009.
[2]
in Proceedings of the 7th and 8th International Workshops on Structural Health Monitoring, F. K. Chang, Ed., Stanford University, CRC Press, Stanford, Calif, USA, 2009.
[3]
D. Wang and A. Haldar, “System identification with limited observations and without input,” Journal of Engineering Mechanics, vol. 123, no. 5, pp. 504–510, 1997.
[4]
J. Chen and J. Li, “Simultaneous identification of structural parameters and input time history from output-only measurements,” Computational Mechanics, vol. 33, no. 5, pp. 365–374, 2004.
[5]
J. N. Yang, S. Pan, and H. Huang, “An adaptive extended Kalman filter for structural damage identifications II: unknown inputs,” Structural Control and Health Monitoring, vol. 14, no. 3, pp. 497–521, 2007.
[6]
J. N. Yang and H. Huang, “Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs,” International Journal of Non-Linear Mechanics, vol. 42, no. 5, pp. 789–801, 2007.
[7]
X. Zhao, Y. L. Xu, J. Li, and J. Chen, “Hybrid identification method for multi-story buildings with unknown ground motion: theory,” Journal of Sound and Vibration, vol. 291, no. 1-2, pp. 215–239, 2006.
[8]
X. Zhao, Y. L. Xu, J. Chen, and J. Li, “Hybrid identification method for multi-story buildings with unknown ground motion: experimental investigation,” Engineering Structures, vol. 27, no. 8, pp. 1234–1247, 2005.
[9]
T. H. Yi, H. N. Li, and M. Gu, “A new method for optimal selection of sensor location on a high-rise building using simplified finite element model,” Structural Engineering and Mechanics, vol. 37, no. 6, pp. 671–684, 2011.
[10]
T. H. Yi, H. N. Li, and M. Gu, “Optimal sensor placement for structural health monitoring based on multiple optimization strategies,” Structural Design of Tall and Special Buildings, vol. 20, no. 7, pp. 881–890, 2011.
[11]
M. Hoshiya and E. Saito, “Structural identification by extended Kalman filter,” Journal of Engineering Mechanics, vol. 110, no. 12, pp. 1757–1772, 1984.
[12]
M. Hoshiya and A. Sutoh, “Kalman Filter—finite element method in identification,” Journal of Engineering Mechanics, vol. 119, no. 2, pp. 197–210, 1993.
[13]
K. J. Lee and C. B. Yun, “Parameter identification for nonlinear behavior of RC bridge piers using sequential modified extended Kalman filter,” Smart Structures and Systems, vol. 4, no. 3, pp. 319–342, 2008.
[14]
X. Liu, P. J. Escamilla-Ambrosio, and N. A. J. Lieven, “Extended Kalman filtering for the detection of damage in linear mechanical structures,” Journal of Sound and Vibration, vol. 325, no. 4-5, pp. 1023–1046, 2009.
[15]
E. G. Straser and A. S. Kiremidjian, “Monitoring and evaluating civil structures using measured vibration,” in Smart Structures and Materials 1996: Smart Systems for Bridges, Structures, and Highways, vol. 2719 of Proceedings of SPIE, pp. 112–122, San Diego, Calif, USA, February 1996.
[16]
C. G. Koh, B. Hong, and C. Y. Liaw, “Substructural and progressive structural identification methods,” Engineering Structures, vol. 25, no. 12, pp. 1551–1563, 2003.
[17]
N. Thanh and C. G. Koh, “An improved substructural identification strategy for large structural systems,” Structural Control and Health. In press.
[18]
S. S. Law and D. Yong, “Substructure methods for structural condition assessment,” Journal of Sound and Vibration, vol. 330, no. 15, pp. 3606–3619, 2011.
[19]
S. Weng, Y. Xia, Y. L. Xu, and H. P. Zhu, “Substructure based approach to finite element model updating,” Computers and Structures, vol. 89, no. 9-10, pp. 772–782, 2011.
[20]
J. P. Lynch, “An overview of wireless structural health monitoring for civil structures,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1851, pp. 345–372, 2007.
[21]
Y. Wang, Wireless sensing and decentralized control for civil structures: theory and implementation [Ph.D. thesis], Department of civil and Environmental Engineering, Stanford University, Stanford, Calif, USA, 2007.
[22]
S. G. Taylor, K. M. Farinholt, G. Park, M. D. Todd, and C. R. Farrar, “Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 661–673, 2010.
[23]
Y. Yu, J. Ou, and H. Li, “Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 641–659, 2010.
[24]
P. Li, H. Gu, G. Song, R. Zheng, and Y. L. Mo, “Concrete structural health monitoring using piezoceramicbased wireless sensor networks,” Smart Structures and Systems, vol. 6, no. 5-6, pp. 731–748, 2010.
[25]
Y. Q. Ni, B. Li, K. H. Lam et al., “In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system,” Smart Structures and Systems, vol. 7, no. 2, pp. 83–102, 2011.
[26]
B. F. Spencer Jr. and S. Cho, “Recent advances in wireless structural health monitoring of civil infrastructure,” in Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering, pp. 143–165, Southeast University Press, Xiamen, China, 2011.
[27]
J. A. Rice, K. A. Mechitov, S. H. Sim, B. F. Spencer Jr., and G. A. Agha, “Enabling framework for structural health monitoring using smart sensors,” Structural Control and Health Monitoring, vol. 18, no. 5, pp. 574–587, 2011.
[28]
A. T. Zimmerman, M. Shiraishi, R. A. Swartz, and J. P. Lynch, “Automated modal parameter estimation by parallel processing within wireless monitoring systems,” Journal of Infrastructure Systems, vol. 14, no. 1, pp. 102–113, 2008.
[29]
Y. Lei, W. A. Shen, Y. Song, and Y. Wang, “Intelligent wireless sensors with application to the identification of structural modal parameters and steel cable forces: from the lab to the field,” Advances in Civil Engineering, vol. 2010, Article ID 316023, 9 pages, 2010.
[30]
F. Casciati, L. Faravelli, and R. Rossi, “Architecture optimization for wireless sensor networks,” in Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol. 5765 of Proceedings of SPIE, pp. 253–258, San Diego, Calif, USA, March 2005.
[31]
S. Casciati and Z. Chen, “A multi-channel wireless connection system for structural health monitoring applications,” Structural Control and Health Monitoring, vol. 18, no. 5, pp. 588–600, 2011.
[32]
S. Casciati, L. Faravelli, and Z. Chen, “Energy harvesting and power management of wireless sensors for structural control applications in civil engineering,” Smart Structures and Systems, vol. 10, no. 3, pp. 299–312, 2012.
[33]
Q. Wu, Y. Gu, and N. S. V. Rao, “Optimizing cluster heads for energy efficiency in large-scale heterogeneous wireless sensor networks,” International Journal of Distributed Sensor Networks, vol. 2010, Article ID 961591, 9 pages, 2010.
[34]
Y. Lei, Z. L. Lai, L. J. Liu, Y. L. Tan, and J. X. Wang, “A new type wireless sensor network for distributed structural damage detection,” in Proceedings of the 1st Middle East Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures, Dubai, UAE, February 2011.
[35]
IEEE Computer Society, IEEE Standard 802.15.4, The Institute of Electrical and Electronics Engineers, New York, NY, USA, 2003.
[36]
Chipcon Inc. Corporation, San Jose, Calif, USA, http://www.chipon.com/.