Wireless sensor networks have been widely applied to various application domains such as environmental monitoring and surveillance. Because of reliance on the open transmission media, a sensor network may suffer from radio jamming attacks, which are easy to launch but difficult to defend. Attacked by jamming signals, a sensor network may experience corrupted packets and low network throughput. A number of defense techniques have been proposed. However, each defense technique is suitable for only a limited range of network and jamming conditions. This paper proposes an adaptive approach to antijamming for sensor networks by combining the strength of state-of-the-art antijamming techniques, which enables each node to adaptively select the optimal antijamming technique for different jamming conditions. The great challenge is that the sensor network undergoes varying jamming conditions over time. We address this challenge by formulating the antijamming problem of the sensor network as a Markov decision process and propose an efficient algorithm for computing the best antijamming strategy. By comprehensive simulation experiments, we demonstrate that a sensor network using the derived antijamming strategy can well defend from radio jamming attacks and in the meanwhile retain high energy efficiency. 1. Introduction With the appealing characteristics of low-cost, easy to deploy, and unattended operation and the ability of withstanding harsh environmental conditions, wireless sensor networks have been implemented in a wide range of applications, such as environment monitoring [1] and event detection [2]. Sensor networks transmit wireless signals over the open shared media. This leaves a sensor network vulnerable to radio jamming attacks. In [3, 4], several jamming attacks have been explored, which corrupt control packets, such as RTS (Request-to-Send) and CTS (Clear-to-Send). The jammer just keeps sending packets like RTS to prevent transmission of legitimate packets. These methods are usually based on the statistics of packet transmission history and can cause severe damage to the sensor network with only modest overhead. Thus, antijamming is enormously important for secure operation of sensor networks. As being well known, sensor nodes are typically powered by batteries and hence limited in power supply. This has been generally accepted as one of the crucial issues of the sensor network. Therefore, antijamming needs to be energy efficient. A number of antijamming methods have been proposed, such as channel surfing [5], error correction codes and transmission
References
[1]
Y. Liu, Y. He, M. Li et al., “Does wireless sensor network scale? A measurement study on GreenOrbs,” in Proceedings of the IEEE INFOCOM, pp. 873–881, April 2011.
[2]
M. Li, Y. Liu, and L. Chen, “Non-threshold based event detection for 3D environment monitoring in sensor networks,” in Proceedings of the IEEE ICDCS, 2008.
[3]
Y. W. Law, M. Palaniswami, L. V. Hoesel, J. Doumen, P. Hartel, and P. Havinga, “Energy-efficient link-layer jamming attacks against wireless sensor network MAC protocols,” ACM Transactions on Sensor Networks, vol. 5, no. 1, pp. 1–38, 2009.
[4]
R. Negi and A. Perrig, “Jamming analysis of MAC protocols,” Tech. Rep., 2003.
[5]
W. Xu, W. Trappe, and Y. Zhang, “Channel surfing: defending wireless sensor networks from interference,” in Proceedings of the 6th International Symposium on Information Processing in Sensor Networks (IPSN '07), pp. 499–508, April 2007.
[6]
A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos, and G. Pantziou, “A survey on jamming attacks and countermeasures in WSNs,” IEEE Communications Surveys and Tutorials, vol. 11, no. 4, pp. 42–56, 2009.
[7]
W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor networks: attack and defense strategies,” IEEE Network, vol. 20, no. 3, pp. 41–47, 2006.
[8]
W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching and detecting jamming attacks in wireless networks,” in Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '05), pp. 46–57, May 2005.
[9]
M. Li, I. Koutsopoulos, and R. Poovendran, “Optimal jamming attacks and network defense policies in wireless sensor networks,” in Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE INFOCOM '07), pp. 1307–1315, May 2007.
[10]
M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Reactive jamming in wireless networks: how realistic is the threat?” in Proceedings of the ACM WiSec, 2011.
[11]
G. Balakrishnan, Y. Mei, J. Yingtao, and K. Yoohwan, “Performance analysis of error control codes for wireless sensor networks,” in Proceedings of the 4th International Conference on Information Technology-New Generations (ITNG '07), pp. 876–879, April 2007.
[12]
W. Xu, “On adjusting power to defend wireless networks from jamming,” in Proceedings of the 1st Workshop on the Security and Privacy of Emerging Ubiquitous Communication Systems, pp. 1–6, 2007.
[13]
K. Siddhabathula, “Fast jamming detection in wireless sensor networks,” University of Texas, 2011.
[14]
X. Jiang, W. Hu, S. Zhu, and G. Cao, “Compromise-resilient anti-jamming for wireless sensor networks,” Information and Communications Security, vol. 6476, pp. 140–154, 2010.
[15]
W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and spatial retreats: defenses against wireless denial of service,” in Proceedings of the ACM Workshop on Wireless Security (WiSe '04), pp. 80–89, October 2004.
[16]
W. Xu, W. Trappe, and Y. Zhang, “Defending wireless sensor networks from radio interference through channel adaptation,” ACM Transactions on Sensor Networks, vol. 4, no. 4, article 18, 2008.
[17]
A. D. Wood, J. A. Stankovic, and S. H. Son, “JAM: a jammed-area Mapping service for sensor networks,” in Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS '03), pp. 286–297, December 2003.
[18]
P. Lettieri, C. Fragouli, and M. B. Srivastava, “Low power error control for wireless links,” in Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom '97), pp. 139–150, September 1997.