A game theoretic method was proposed to adaptively maintain the energy efficiency in distributed wireless sensor networks. Based on a widely used transmission paradigm, the utility function was formulated under a proposed noncooperative framework and then the existence of Nash Equilibrium (NE) has been proved to guarantee system stability. To pursuit NE, an NPC algorithm was proposed to regulate heterogeneous nodes with various communication demands given the definition of urgency level. Results from both simulation and real testbed presented the robustness and rapid convergence of NPC algorithm. Furthermore, the network performance can remain in a promising state while the energy consumption is greatly decreased. 1. Introduction Power control is one of the critical issues in wireless sensor networks (WSNs), especially when node is battery-powered. In wireless network, both throughput and bit error rate (BER) depend on the signal to interference and noise ratio (SINR) on receiver side, which will result in the transmission dilemma in wireless sensor networks. If transmitter raises its transmission power to increase SINR, it will inevitably also act as noise to other nodes which are on the same channel. Therefore, power control in WSNs has been targeting to find certain appropriate strategies to alleviate the effect. Most of solutions focus on regulating transmission power to increase the network capacity and prolong the battery life. To better manipulate transmitter power, Yates proposed an analytic method for power iteration, which is based on the satisfaction of signal to interference ratio (SIR) requirement [1]. A SIR balancing algorithm was developed by Zander that each and every terminal, by using this algorithm, would periodically adjust their power to converge to the corresponding SIR equilibrium [2]. As wireless sensor network has been evolving as the popular platform for large-scale applications, an alternative approach to the power control problem based on the game theory has been discussed. For example, in military and emergency scenarios, wireless sensor nodes under the same authority tend to work with each other in a fully cooperative way. Wu et al. proposed a fill-fledged cross-layer optimization design, which operated in a bandwidth-limited regime and in an energy-limited regime. The significant performance could be achieved by making a tradeoff between throughput and energy efficiency [3]. Wu and Bertsekas pointed out that generally power levels are assigned from a discrete set, and each mobile node holds its own interest so that the
References
[1]
R. D. Yates, “Framework for uplink power control in cellular radio systems,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341–1347, 1995.
[2]
J. Zander, “Performance of optimum transmitter power control in cellular radio systems,” IEEE Transactions on Vehicular Technology, vol. 41, no. 1, pp. 57–62, 1992.
[3]
Y. Wu, P. A. Chou, Q. Zhang, K. Jain, W. Zhu, and S. Y. Kung, “Network planning in wireless ad hoc networks: a cross-layer approach,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 1, pp. 136–149, 2005.
[4]
C. Wu and D. P. Bertsekas, “Distributed power control algorithms for wireless networks,” IEEE Transactions on Vehicular Technology, vol. 50, no. 2, pp. 504–514, 2001.
[5]
Z. Zhou, S. Zhou, J. H. Cui, and S. Cui, “Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 8, pp. 3066–3079, 2008.
[6]
C. Long, Q. Zhang, B. Li, H. J. Yang, and X. Guan, “Non-cooperative power control for wireless ad hoc networks with repeated games,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 6, pp. 1101–1112, 2007.
[7]
E. Altman, K. Avrachenkov, and A. Garnaev, “Transmission power control game with SINR as objective function,” in Network Control and Optimization, vol. 5435 of Lecture Notes in Computer Science, pp. 112–120, 2009.
[8]
Q. Sun, X. Zeng, N. Chen, Z. Ke, and R. U. Rasool, “A non-cooperative power control algorithm for wireless ad hoc & sensor networks,” in Proceedings of the 2nd International Conference on Genetic and Evolutionary Computing (WGEC '08), pp. 181–184, Jingzhou, China, September 2008.
[9]
Y. Shi, R. K. Mallik, and K. B. Letaief, “Power control for relay-assisted wireless systems with general relaying,” in Proceedings of the IEEE International Conference on Communications (ICC '10), Beijing, China, May 2010.
[10]
E. Tsiropoulou, G. Katsinis, and S. Papavassiliou, “Distributed uplink power control in multi-service wireless networks via a game theoretic approach with convex pricing,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 1, pp. 61–68, 2012.
[11]
T. Kesselheim, “A Constant-factor approximation for wireless capacity maximization with power control in the SINR model,” in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '11), pp. 1549–1559, San Francisco, Calif, USA, January 2011.
[12]
Q. Lu, T. Peng, C. Hu, et al., “Convergence of utility-based power control in Gaussian interference channel,” The Institution of Engineering and Technology Communication, vol. 5, no. 8, pp. 1052–1059, 2011.
[13]
C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless data networks,” IEEE Transactions on Communications, vol. 50, no. 2, pp. 291–303, 2002.
[14]
S. Toumpis and A. J. Goldsmith, “Capacity regions for wireless ad hoc networks,” IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 736–748, 2003.
[15]
H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, London, UK, 2005.
[16]
V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-aware wireless microsensor networks,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 40–50, 2002.
[17]
A. Goldsmith, Wireless Communications, Cambridge University Press, Cambridge, UK, 2005.