Despite decades of basic and clinical research, our understanding of how benzodiazepines tend to lose their efficacy over time (tolerance) is at least incomplete. In appears that tolerance develops relatively quickly for the sedative and anticonvulsant actions of benzodiazepines, whereas tolerance to anxiolytic and amnesic effects probably does not develop at all. In light of this evidence, we review the current evidence for the neuroadaptive mechanisms underlying benzodiazepine tolerance, including changes of (i) the receptor (subunit expression and receptor coupling), (ii) intracellular changes stemming from transcriptional and neurotrophic factors, (iii) ionotropic glutamate receptors, (iv) other neurotransmitters (serotonin, dopamine, and acetylcholine systems), and (v) the neurosteroid system. From the large variance in the studies, it appears that either different (simultaneous) tolerance mechanisms occur depending on the benzodiazepine effect, or that the tolerance-inducing mechanism depends on the activated receptor subtypes. Importantly, there is no convincing evidence that tolerance occurs with α subunit subtype-selective compounds acting at the benzodiazepine site. 1. Introduction Shortly after their development in the 1960s, benzodiazepines became very popular as they exerted many desirable effects such as reduction of anxiety, anticonvulsant properties, and myorelaxation combined with a rather low toxicity [1]. However, their use is associated with many side effects precluding their long-term use, including sedation, amnesia, cognitive impairment, and ataxia. Even though guidelines generally recommend limiting benzodiazepines to short-term use, long-term use still often occurs. Chronic benzodiazepine treatment can result in the development of benzodiazepine dependence [2]. DSM-IV criteria for benzodiazepine dependence consist of various psychological (behavioral) and physical symptoms, including tolerance, withdrawal symptoms when drug intake is stopped and dose escalation [3]. Indeed, chronically treated patients become less sensitive to some effects of benzodiazepines (tolerance) which may include anticonvulsant, sedative, hypnotic, and myorelaxant effects of benzodiazepines. Also, benzodiazepine discontinuation may result in the appearance of a characteristic withdrawal syndrome with heightened anxiety, insomnia, and sensory disturbances [4]. In fact, tolerance and withdrawal could be two manifestations of the same compensatory mechanism, with withdrawal occurring when the counterbalancing benzodiazepine effect is absent [5]. This is
References
[1]
M. Lader, “History of benzodiazepine dependence,” Journal of Substance Abuse Treatment, vol. 8, no. 1-2, pp. 53–59, 1991.
[2]
R. T. Owen and P. Tyrer, “Benzodiazepine dependence. A review of the evidence,” Drugs, vol. 25, no. 4, pp. 385–398, 1983.
[3]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR, 2000.
[4]
H. Petursson, “The benzodiazepine withdrawal syndrome,” Addiction, vol. 89, no. 11, pp. 1455–1459, 1994.
[5]
C. Allison and J. A. Pratt, “Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence,” Pharmacology and Therapeutics, vol. 98, no. 2, pp. 171–195, 2003.
[6]
J. A. Pratt, R. R. Brett, and D. J. Laurie, “Benzodiazepine dependence: from neural circuits to gene expression,” Pharmacology Biochemistry and Behavior, vol. 59, no. 4, pp. 925–934, 1998.
[7]
J. H. Woods, J. L. Katz, and G. Winger, “Benzodiazepines: use, abuse, and consequences,” Pharmacological Reviews, vol. 44, no. 2, pp. 151–347, 1992.
[8]
N. A. Ator, J. R. Atack, R. J. Hargreaves, H. D. Burns, and G. R. Dawson, “Reducing abuse liability of /benzodiazepine ligands via selective partial agonist efficacy at and subtypes,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 1, pp. 4–16, 2010.
[9]
S. C. Licata and J. K. Rowlett, “Abuse and dependence liability of benzodiazepine-type drugs: receptor modulation and beyond,” Pharmacology Biochemistry and Behavior, vol. 90, no. 1, pp. 74–89, 2008.
[10]
K. R. Tan, M. Brown, G. Labouébe et al., “Neural bases for addictive properties of benzodiazepines,” Nature, vol. 463, no. 7282, pp. 769–774, 2010.
[11]
K. A. Wafford, “ receptor subtypes: any clues to the mechanism of benzodiazepine dependence?” Current Opinion in Pharmacology, vol. 5, no. 1, pp. 47–52, 2005.
[12]
J. H. Krystal, J. Staley, G. Mason et al., “γ-aminobutyric acid type A receptors and alcoholism: intoxication, dependence, vulnerability, and treatment,” Archives of General Psychiatry, vol. 63, no. 9, pp. 957–968, 2006.
[13]
U. Rudolph and H. Mohler, “GABA-based therapeutic approaches: receptor subtype functions,” Current Opinion in Pharmacology, vol. 6, no. 1, pp. 18–23, 2006.
[14]
R. M. McKernan and P. J. Whiting, “Which -receptor subtypes really occur in the brain?” Trends in Neurosciences, vol. 19, no. 4, pp. 139–143, 1996.
[15]
W. Sieghart, “Structure and pharmacology of γ-aminobutyric receptor subtypes,” Pharmacological Reviews, vol. 47, no. 2, pp. 181–234, 1995.
[16]
W. Sieghart and G. Sperk, “Subunit composition, distribution and function of receptor subtypes,” Current Topics in Medicinal Chemistry, vol. 2, no. 8, pp. 795–816, 2002.
[17]
S. R. Cobb, E. H. Buhl, K. Halasy, O. Paulsen, and P. Somogyl, “Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons,” Nature, vol. 378, no. 6552, pp. 75–78, 1995.
[18]
D. A. Lewis, R. Y. Cho, C. S. Carter et al., “Subunit-selective modulation of GABA type A receptor neurotransmission and cognition in schizophrenia,” American Journal of Psychiatry, vol. 165, no. 12, pp. 1585–1593, 2008.
[19]
H. Mohler, J. M. Fritschy, and U. Rudolph, “A new benzodiazepine pharmacology,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 1, pp. 2–8, 2002.
[20]
D. Belelli, N. L. Harrison, J. Maguire, R. L. Macdonald, M. C. Walker, and D. W. Cope, “Extrasynaptic receptors: form, pharmacology, and function,” Journal of Neuroscience, vol. 29, no. 41, pp. 12757–12763, 2009.
[21]
D. R. Serwanski, C. P. Miralles, S. B. Christie, A. K. Mehta, X. Li, and A. L. De Blas, “Synaptic and nonsynaptic localization of receptors containing the α5 subunit in the rat brain,” Journal of Comparative Neurology, vol. 499, no. 3, pp. 458–470, 2006.
[22]
U. Rudolph, F. Crestani, D. Benke et al., “Benzodiazepine actions mediated by specific γ-aminobutyric receptor subtypes,” Nature, vol. 401, no. 6755, pp. 796–800, 1999.
[23]
R. M. McKernan, T. W. Rosahl, D. S. Reynolds et al., “Sedative but not anxiolytic properties of benzodiazepines are mediated by the receptor α1 subtype,” Nature Neuroscience, vol. 3, no. 6, pp. 587–592, 2000.
[24]
J. R. Atack, “ receptor subtype-selective modulators. I. alpha2/alpha3-selective agonists as non-sedating anxiolytics,” Current Topics in Medicinal Chemistry, vol. 2, pp. 331–360, 2010.
[25]
N. Collinson, F. M. Kuenzi, W. Jarolimek et al., “Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the receptor,” Journal of Neuroscience, vol. 22, no. 13, pp. 5572–5580, 2002.
[26]
G. R. Dawson, K. A. Maubach, N. Collinson et al., “An inverse agonist selective for α5 subunit-containing receptors enhances cognition,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 3, pp. 1335–1345, 2006.
[27]
C. van Rijnsoever, M. T?uber, M. K. Choulli et al., “Requirement of α5- receptors for the development of tolerance to the sedative action of diazepam in mice,” Journal of Neuroscience, vol. 24, no. 30, pp. 6785–6790, 2004.
[28]
N. A. Ator, “Contributions of receptor subtype selectivity to abuse liability and dependence potential of pharmacological treatments for anxiety and sleep disorders,” CNS Spectrums, vol. 10, no. 1, pp. 31–39, 2005.
[29]
R. R. Griffiths, C. A. Sannerud, N. A. Ator, and J. V. Brady, “Zolpidem behavioral pharmacology in baboons: self-injection, discrimination, tolerance and withdrawal,” Journal of Pharmacology and Experimental Therapeutics, vol. 260, no. 3, pp. 1199–1208, 1992.
[30]
J. K. Rowlett, D. M. Platt, S. Lelas, J. R. Atack, and G. R. Dawson, “Different receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 3, pp. 915–920, 2005.
[31]
G. Griebel, G. Perrault, J. Simiand, et al., “SL651498: an anxioselective compound with functional selectivity for alpha2- and alpha3-containing gamma-aminobutyric receptors,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 2, pp. 753–768, 2001.
[32]
F. M. Benes, M. S. Todtenkopf, P. Logiotatos, and M. Williams, “Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain,” Journal of Chemical Neuroanatomy, vol. 20, no. 3-4, pp. 259–269, 2000.
[33]
A. Schousboe, A. Sarup, O. M. Larsson, and H. S. White, “GABA transporters as drug targets for modulation of GABAergic activity,” Biochemical Pharmacology, vol. 68, no. 8, pp. 1557–1563, 2004.
[34]
A. N. Bateson, “Basic pharmacologic mechanisms involved in benzodiazepine tolerance and withdrawal,” Current Pharmaceutical Design, vol. 8, no. 1, pp. 5–21, 2002.
[35]
S. E. File, “Tolerance to the behavioral actions of benzodiazepines,” Neuroscience and Biobehavioral Reviews, vol. 9, no. 1, pp. 113–121, 1985.
[36]
S. E. File, “The history of benzodiazepine dependence: a review of animal studies,” Neuroscience and Biobehavioral Reviews, vol. 14, no. 2, pp. 135–146, 1990.
[37]
D. Schneider-Helmert, “Why low-dose benzodiazepine-dependent insomniacs can't escape their sleeping pills,” Acta Psychiatrica Scandinavica, vol. 78, no. 6, pp. 706–711, 1988.
[38]
I. Lucki and K. Rickels, “The behavioral effects of benzodiazepines following long-term use,” Psychopharmacology Bulletin, vol. 22, no. 2, pp. 424–433, 1986.
[39]
I. Lucki, K. Rickels, and A. M. Geller, “Chronic use of benzodiazepines and psychomotor and cognitive test performance,” Psychopharmacology, vol. 88, no. 4, pp. 426–433, 1986.
[40]
D. S. Cowley, P. P. Roy-Byrne, A. Radant et al., “Benzodiazepine sensitivity in panic disorder: effects of chronic alprazolam treatment,” Neuropsychopharmacology, vol. 12, no. 2, pp. 147–157, 1995.
[41]
D. Allen, H. V. Curran, and M. Lader, “The effects of repeated doses of clomipramine and alprazolam on physiological, psychomotor and cognitive functions in normal subjects,” European Journal of Clinical Pharmacology, vol. 40, no. 4, pp. 355–362, 1991.
[42]
A. Kales, M. B. Scharf, and J. D. Kales, “Rebound insomnia: a new clinical syndrome,” Science, vol. 201, no. 4360, pp. 1039–1041, 1978.
[43]
A. Kales, C. R. Soldatos, E. O. Bixler, and J. D. Kales, “Early morning insomnia with rapidly eliminated benzodiazepines,” Science, vol. 220, no. 4592, pp. 95–97, 1983.
[44]
V. Pegram, P. Hyde, and P. Linton, “Chronic use of triazolam: the effects on the sleep patterns of insomniacs,” Journal of International Medical Research, vol. 8, no. 3, pp. 224–231, 1980.
[45]
T. Roth, M. Kramer, and T. Lutz, “Intermediate use of triazolam: a sleep laboratory study,” Journal of International Medical Research, vol. 4, no. 1, pp. 59–63, 1976.
[46]
M. M. Mitler, M. A. Carskadon, R. L. Phillips et al., “Hypnotic efficacy of temazepam: a long-term sleep laboratory evaluation,” British Journal of Clinical Pharmacology, vol. 8, no. 1, pp. 63S–68S, 1979.
[47]
A. Kales and J. D. Kales, “Sleep laboratory studies of hypnotic drugs: efficacy and withdrawal effects,” Journal of Clinical Psychopharmacology, vol. 3, no. 2, pp. 140–150, 1983.
[48]
C. R. Soldatos, D. G. Dikeos, and A. Whitehead, “Tolerance and rebound insomnia with rapidly eliminated hypnotics: a meta-analysis of sleep laboratory studies,” International Clinical Psychopharmacology, vol. 14, no. 5, pp. 287–303, 1999.
[49]
M. Monane, R. J. Glynn, and J. Avorn, “The impact of sedative-hypnotic use on sleep symptoms in elderly nursing home residents,” Clinical Pharmacology and Therapeutics, vol. 59, no. 1, pp. 83–92, 1996.
[50]
H. V. Curran, R. Collins, S. Fletcher, S. C. Y. Kee, B. Woods, and S. Iliffe, “Older adults and withdrawal from benzodiazepine hypnotics in general practice: effects on cognitive function, sleep, mood and quality of life,” Psychological Medicine, vol. 33, no. 7, pp. 1223–1237, 2003.
[51]
D. Poyares, C. Guilleminault, M. M. Ohayon, and S. Tufik, “Chronic benzodiazepine usage and withdrawal in insomnia patients,” Journal of Psychiatric Research, vol. 38, no. 3, pp. 327–334, 2004.
[52]
T. R. Browne and J. K. Penry, “Benzodiazepines in the treatment of epilepsy: a review,” Epilepsia, vol. 14, no. 3, pp. 277–310, 1973.
[53]
W. Loscher, C. Rundfeldt, D. Honack, and U. Ebert, “Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. I. Comparison of diazepam, clonazepam, clobazam and abecarnil,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 2, pp. 561–572, 1996.
[54]
C. Rundfeldt, P. Wlaz, D. Honack, and W. Loscher, “Anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. Comparison of diazepam, Bretazenil and Abecarnil,” Journal of Pharmacology and Experimental Therapeutics, vol. 275, no. 2, pp. 693–702, 1995.
[55]
S. F. Gonsalves and D. W. Gallager, “Time course for development of anticonvulsant tolerance and GABAergic subsensitivity after chronic diazepam,” Brain Research, vol. 405, no. 1, pp. 94–99, 1987.
[56]
D. Ko, J. M. Rho, C. M. DeGiorgio, and S. Sato, “Benzodiazpines,” in Epilepsy: A Comprehensive Textbook, J. J. Engel and T. A. Pedley, Eds., pp. 1475–1489, Lippincott-Raven, Philadelphia, Pa, USA, 1997.
[57]
M. J. Brodie, “Established anticonvulsants and treatment of refractory epilepsy,” The Lancet, vol. 336, no. 8711, pp. 350–354, 1990.
[58]
S. E. File and L. Wilks, “Effects of acute and chronic treatment on the pro- and anti-convulsant actions of CL 218, 872, PK 8165 and PK 9084, putative ligands for the benzodiazepine receptor,” Journal of Pharmacy and Pharmacology, vol. 37, no. 4, pp. 252–256, 1985.
[59]
M. Feely, P. Boyland, A. Picardo, A. Cox, and J. P. Gent, “Lack of anticonvulsant tolerance with RU 32698 and Ro 17-1812,” European Journal of Pharmacology, vol. 164, no. 2, pp. 377–380, 1989.
[60]
W. Loscher, C. Rundfeldt, D. Honack, and U. Ebert, “Long-term studies on anticonvulsant tolerance and withdrawal characteristics of benzodiazepine receptor ligands in different seizure models in mice. II. The novel imidazoquinazolines NNC 14-0185 and NNC 14-0189,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 2, pp. 573–581, 1996.
[61]
H. V. Curran, A. Bond, G. O'Sullivan et al., “Memory functions, alprazolam and exposure therapy: a controlled longitudinal study of agoraphobia with panic disorder,” Psychological Medicine, vol. 24, no. 4, pp. 969–976, 1994.
[62]
P. R. Tata, J. Rollings, M. Collins, A. Pickering, and R. R. Jacobson, “Lack of cognitive recovery following withdrawal from long-term benzodiazepine use,” Psychological Medicine, vol. 24, no. 1, pp. 203–213, 1994.
[63]
M. J. Barker, K. M. Greenwood, M. Jackson, and S. F. Crowe, “Persistence of cognitive effects after withdrawal from long-term benzodiazepine use: a meta-analysis,” Archives of Clinical Neuropsychology, vol. 19, no. 3, pp. 437–454, 2004.
[64]
K. Tsunoda, H. Uchida, T. Suzuki, K. Watanabe, T. Yamashima, and H. Kashima, “Effects of discontinuing benzodiazepine-derivative hypnotics on postural sway and cognitive functions in the elderly,” International Journal of Geriatric Psychiatry, vol. 25, no. 12, pp. 1259–1265, 2010.
[65]
U. Tonne, A. J. Hiltunen, B. Vikander et al., “Neuropsychological changes during steady-state drug use, withdrawal and abstinence in primary benzodiazepine-dependent patients,” Acta Psychiatrica Scandinavica, vol. 91, no. 5, pp. 299–304, 1995.
[66]
K. Rickels, I. Lucki, E. Schweizer, F. García-Espa?a, and W. G. Case, “Psychomotor performance of long-term benzodiazepine users before, during, and after benzodiazepine discontinuation,” Journal of Clinical Psychopharmacology, vol. 19, no. 2, pp. 107–113, 1999.
[67]
E. Schweizer, K. Rickels, S. Weiss, and S. Zavodnick, “Maintenance drug treatment of panic disorder: I. Results of a prospective, placebo-controlled comparison of alprazolam and imipramine,” Archives of General Psychiatry, vol. 50, no. 1, pp. 51–60, 1993.
[68]
K. Rickels, G. Case, R. W. Downing, and A. Winokur, “Long-term diazepam therapy and clinical outcome,” The Journal of the American Medical Association, vol. 250, no. 6, pp. 767–771, 1983.
[69]
D. S. Charney and S. W. Woods, “Benzodiazepine treatment of panic disorder: a comparison of alprazolam and lorazepam,” Journal of Clinical Psychiatry, vol. 50, no. 11, pp. 418–423, 1989.
[70]
J. C. Ballenger, “Long-term pharmacologic treatment of panic disorder,” Journal of Clinical Psychiatry, vol. 52, no. 2, supplement, pp. 18–23, 1991.
[71]
G. D. Burrows, F. K. Judd, and T. R. Norman, “Long-term drug treatment of panic disorder,” Journal of Psychiatric Research, vol. 27, supplement 1, pp. 111–125, 1993.
[72]
M. H. Pollack, G. E. Tesar, J. F. Rosenbaum, and S. A. Spier, “Clonazepam in the treatment of panic disorder and agoraphobia: a one-year follow-up,” Journal of Clinical Psychopharmacology, vol. 6, no. 5, pp. 302–304, 1986.
[73]
J. B. Cohn and C. S. Wilcox, “Long-term comparison of alprazolam, lorazepam and placebo in patients with an anxiety disorder,” Pharmacotherapy, vol. 4, no. 2, pp. 93–98, 1984.
[74]
S. M. Sutherland, L. A. Tupler, J. T. Colket, and J. R. T. Davidson, “A 2-year follow-up of social phobia: status after a brief medication trial,” Journal of Nervous and Mental Disease, vol. 184, no. 12, pp. 731–738, 1996.
[75]
J. R. T. Davidson, S. M. Ford, R. D. Smith, and N. L. S. Potts, “Long-term treatment of social phobia with clonazepam,” Journal of Clinical Psychiatry, vol. 52, no. 11, supplement, pp. 16–20, 1991.
[76]
M. W. Otto, M. H. Pollack, R. A. Gould et al., “A comparison of the efficacy of clonazepam and cognitive-behavioral group therapy for the treatment of social phobia,” Journal of Anxiety Disorders, vol. 14, no. 4, pp. 345–358, 2000.
[77]
R. R. Griffiths and E. M. Weerts, “Benzodiazepine self-administration in humans and laboratory animals—implications for problems of long-term use and abuse,” Psychopharmacology, vol. 134, no. 1, pp. 1–37, 1997.
[78]
E. M. Weerts and R. R. Griffiths, “Zolpidem self-injection with concurrent physical dependence under conditions of long-term continuous availability in baboons,” Behavioural Pharmacology, vol. 9, no. 3, pp. 285–297, 1998.
[79]
E. M. Weerts, B. J. Kaminski, and R. R. Griffiths, “Stable low-rate midazolam self-injection with concurrent physical dependence under conditions of long-term continuous availability in baboons,” Psychopharmacology, vol. 135, no. 1, pp. 70–81, 1998.
[80]
S. B. Soumerai, L. Simoni-Wastila, C. Singer et al., “Lack of relationship between long-term use of benzodiazepines and escalation to high dosages,” Psychiatric Services, vol. 54, no. 7, pp. 1006–1011, 2003.
[81]
C. Fernandes, S. E. File, and D. Berry, “Evidence against oppositional and pharmacokinetic mechanisms of tolerance to diazepam's sedative effects,” Brain Research, vol. 734, no. 1-2, pp. 236–242, 1996.
[82]
L. K. Friedman, T. T. Gibbs, and D. H. Farb, “γ-aminobutyric receptor regulation: heterologous uncoupling of modulatory site interactions induced by chronic steroid, barbiturate, benzodiazepine, or GABA treatment in culture,” Brain Research, vol. 707, no. 1, pp. 100–109, 1996.
[83]
D. W. Gallager, J. M. Lakoski, and S. F. S. L. Gonsalves Rauch, “Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity,” Nature, vol. 308, no. 5954, pp. 74–77, 1984.
[84]
G. Wong, T. Lyon, and P. Skolnick, “Chronic exposure to benzodiazepine receptor ligands uncouples the γ—aminobutyric acid type A receptor in WSS-1 cells,” Molecular Pharmacology, vol. 46, no. 6, pp. 1056–1062, 1994.
[85]
E. I. Tietz, T. H. Chiu, and H. C. Rosenberg, “Regional GABA/benzodiazepine receptor/chloride channel coupling after acute and chronic benzodiazepine treatment,” European Journal of Pharmacology, vol. 167, no. 1, pp. 57–65, 1989.
[86]
R. J. Primus, J. Yu, J. Xu et al., “Allosteric uncoupling after chronic benzodiazepine exposure of recombinant γ-aminobutyric receptors expressed in Sf9 cells: ligand efficacy and subtype selectivity,” Journal of Pharmacology and Experimental Therapeutics, vol. 276, no. 3, pp. 882–890, 1996.
[87]
D. Pericic, D. S. Strac, M. J. Jembrek, and J. Vlainic, “Allosteric uncoupling and up-regulation of benzodiazepine and GABA recognition sites following chronic diazepam treatment of HEK 293 cells stably transfected with α1β2γ2S subunits of receptors,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 375, no. 3, pp. 177–187, 2007.
[88]
R. L. Klein and R. A. Harris, “Regulation of receptor structure and function by chronic drug treatments in vivo and with stably transfected cells,” Japanese Journal of Pharmacology, vol. 70, no. 1, pp. 1–15, 1996.
[89]
R. L. Klein, M. P. Mascia, P. C. Harkness, K. L. Hadingham, P. J. Whiting, and R. A. Harris, “Regulation of allosteric coupling and function of stably expressed γ-aminobutyric acid receptors by chronic treatment with and benzodiazepine agonists,” Journal of Pharmacology and Experimental Therapeutics, vol. 274, no. 3, pp. 1484–1492, 1995.
[90]
N. J. Ali and R. W. Olsen, “Chronic benzodiazepine treatment of cells expressing recombinant receptors uncouples allosteric binding: studies on possible mechanisms,” Journal of Neurochemistry, vol. 79, no. 5, pp. 1100–1108, 2001.
[91]
V. Itier, P. Granger, G. Perrault, H. Depoortere, B. Scatton, and P. Avenet, “Protracted treatment with diazepam reduces benzodiazepine1 receptor-mediated potentiation of gamma-aminobutyric acid-induced currents in dissociated rat hippocampal neurons,” Journal of Pharmacology and Experimental Therapeutics, vol. 279, no. 3, pp. 1092–1099, 1996.
[92]
C. Heninger and D. W. Gallager, “Altered γ-aminobutyric acid/benzodiazepine interaction after chronic diazepam exposure,” Neuropharmacology, vol. 27, no. 10, pp. 1073–1076, 1988.
[93]
R. R. Brett and J. A. Pratt, “Changes in benzodiazepine-GABA receptor coupling in an accumbens-habenula circuit after chronic diazepam treatment,” British Journal of Pharmacology, vol. 116, no. 5, pp. 2375–2384, 1995.
[94]
D. J. Roca, I. Rozenberg, M. Farrant, and D. H. Farb, “Chronic agonist exposure induces down-regulation and allosteric uncoupling of the γ-aminobutyric acid/benzodiazepine receptor complex,” Molecular Pharmacology, vol. 37, no. 1, pp. 37–43, 1990.
[95]
J. T. Kittler and S. J. Moss, “Modulation of receptor activity by phosphorylation and receptor trafficking: implications for the efficacy of synaptic inhibition,” Current Opinion in Neurobiology, vol. 13, no. 3, pp. 341–347, 2003.
[96]
P. Poisbeau, M. C. Cheney, M. D. Browning, and I. Mody, “Modulation of synaptic receptor function by PKA and PKC in adult hippocampal neurons,” Journal of Neuroscience, vol. 19, no. 2, pp. 674–683, 1999.
[97]
S. M. Lilly, X. J. Zeng, and E. I. Tietz, “Role of protein kinase A in receptor dysfunction in CA1 pyramidal cells following chronic benzodiazepine treatment,” Journal of Neurochemistry, vol. 85, no. 4, pp. 988–998, 2003.
[98]
L. Huopaniemi,, R. Keist, A. Randolph, U. Certa, and U. Rudolph, “Diazepam-induced adaptive plasticity revealed by alpha1 receptor-specific expression profiling,” Journal of Neurochemistry, vol. 88, no. 5, pp. 1059–1067, 2004.
[99]
D. Mierlak and D. H. Farb, “Modulation of neurotransmitter receptor desensitization chlordiazepoxide stimulates fading of the GABA response,” Journal of Neuroscience, vol. 8, no. 3, pp. 814–820, 1988.
[100]
T. C. Jacob, S. J. Moss, and R. Jurd, “ receptor trafficking and its role in the dynamic modulation of neuronal inhibition,” Nature Reviews Neuroscience, vol. 9, no. 5, pp. 331–343, 2008.
[101]
I. L. Arancibia-Cárcamo and J. T. Kittler, “Regulation of receptor membrane trafficking and synaptic localization,” Pharmacology and Therapeutics, vol. 123, no. 1, pp. 17–31, 2009.
[102]
M. Uusi-Oukari and E. R. Korpi, “Regulation of receptor subunit expression by pharmacological agents,” Pharmacological Reviews, vol. 62, no. 1, pp. 97–135, 2010.
[103]
M. I. Arnot, M. Davies, I. L. Martin, and A. N. Bateson, “ receptor gene expression in rat cortex: differential effects of two chronic diazepam treatment regimes,” Journal of Neuroscience Research, vol. 64, no. 6, pp. 617–625, 2001.
[104]
H. J. Little, D. J. Nutt, and S. C. Taylor, “Bidirectional effects of chronic treatment with agonists and inverse agonists at the benzodiazepine receptor,” Brain Research Bulletin, vol. 19, no. 3, pp. 371–378, 1987.
[105]
M. H. Tehrani and E. M. Barnes Jr., “Sequestration of gamma-aminobutyric receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 1, pp. 384–390, 1997.
[106]
E. M. Barnes Jr., “Intracellular trafficking of receptors,” Life Sciences, vol. 66, no. 12, pp. 1063–1070, 2000.
[107]
J. Liang, N. Zhang, E. Cagetti, C. R. Houser, R. W. Olsen, and I. Spigelman, “Chronic intermittent ethanol-induced switch of ethanol actions from extrasynaptic to synaptic hippocampal receptors,” Journal of Neuroscience, vol. 26, no. 6, pp. 1749–1758, 2006.
[108]
J. P. Herman, N. K. Mueller, and H. Figueiredo, “Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration,” Annals of the New York Academy of Sciences, vol. 1018, pp. 35–45, 2004.
[109]
H. Homayoun and B. Moghaddam, “NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons,” Journal of Neuroscience, vol. 27, no. 43, pp. 11496–11500, 2007.
[110]
D. N. Stephens, “A glutamatergic hypothesis of drug dependence: extrapolations from benzodiazepine receptor ligands,” Behavioural Pharmacology, vol. 6, no. 5-6, pp. 425–446, 1995.
[111]
R. J. Marley, C. Heninger, T. D. Hernandez, and D. W. Gallager, “Chronic administration of β-carboline-3-carboxylic acid methylamide by continuous intraventricular infusion increases GABAergic function,” Neuropharmacology, vol. 30, no. 3, pp. 245–251, 1991.
[112]
E. Izzo, J. Auta, F. Impagnatiello, C. Pesold, A. Guidotti, and E. Costa, “Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3483–3488, 2001.
[113]
S. F. Traynelis, L. P. Wollmuth, C. J. McBain et al., “Glutamate receptor ion channels: structure, regulation, and function,” Pharmacological Reviews, vol. 62, no. 3, pp. 405–496, 2010.
[114]
L. Bard and L. Groc, “Glutamate receptor dynamics and protein interaction: lessons from the NMDA receptor,” Molecular and Cellular Neuroscience, vol. 48, no. 4, pp. 298–307, 2011.
[115]
P. Paoletti and J. Neyton, “NMDA receptor subunits: function and pharmacology,” Current Opinion in Pharmacology, vol. 7, no. 1, pp. 39–47, 2007.
[116]
T. Nakagawa, “The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors,” Molecular Neurobiology, vol. 42, no. 3, pp. 161–184, 2010.
[117]
N. Armstrong, J. Jasti, M. Beich-Frandsen, and E. Gouaux, “Measurement of conformational changes accompanying desensitization in an Ionotropic glutamate receptor,” Cell, vol. 127, no. 1, pp. 85–97, 2006.
[118]
J. Lerma, “Kainate receptor physiology,” Current Opinion in Pharmacology, vol. 6, no. 1, pp. 89–97, 2006.
[119]
J. M. Khanna, A. Chau, and G. Shah, “Effect of NMDA antagonists on rapid tolerance to benzodiazepines,” Brain Research Bulletin, vol. 42, no. 2, pp. 99–103, 1997.
[120]
S. E. File and C. Fernandes, “Dizocilpine prevents the development of tolerance to the sedative effects of diazepam in rats,” Pharmacology Biochemistry and Behavior, vol. 47, no. 4, pp. 823–826, 1994.
[121]
K. G. Steppuhn and L. Turski, “Diazepam dependence prevented by glutamate antagonists,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 14, pp. 6889–6893, 1993.
[122]
J. M. Koff, G. A. Pritchard, D. J. Greenblatt, and L. G. Miller, “The NMDA receptor competitive antagonist CPP modulates benzodiazepine tolerance and discontinuation,” Pharmacology, vol. 55, no. 5, pp. 217–227, 1997.
[123]
C. Fernandes and S. E. File, “Dizocilpine does not prevent the development of tolerance to the anxiolytic effects of diazepam in rats,” Brain Research, vol. 815, no. 2, pp. 431–434, 1999.
[124]
M. Tsuda, N. Shimizu, Y. Yajima, T. Suzuki, and M. Misawa, “Hypersusceptibility to DMCM-induced seizures during diazepam withdrawal in mice: evidence for upregulation of NMDA receptors,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 357, no. 3, pp. 309–315, 1998.
[125]
M. F. Perez, R. Salmiron, and O. A. Ramirez, “NMDA-NR1 and -NR2B subunits mRNA expression in the hippocampus of rats tolerant to diazepam,” Behavioural Brain Research, vol. 144, no. 1-2, pp. 119–124, 2003.
[126]
R. S. Almiron, M. F. Perez, and O. A. Ramirez, “MK-801 prevents the increased NMDA-NR1 and NR2B subunits mRNA expression observed in the hippocampus of rats tolerant to diazepam,” Brain Research, vol. 1008, no. 1, pp. 54–60, 2004.
[127]
B. J. Van Sickle, A. S. Cox, K. Schak, L. J. Greenfield, and E. I. Tietz, “Chronic benzodiazepine administration alters hippocampal CA1 neuron excitability: NMDA receptor function and expression,” Neuropharmacology, vol. 43, no. 4, pp. 595–606, 2002.
[128]
C. Bonavita, A. Ferrero, M. Cereseto, M. Velardez, M. Rubio, and S. Wikinski, “Adaptive changes in the rat hippocampal glutamatergic neurotransmission are observed during long-term treatment with lorazepam,” Psychopharmacology, vol. 166, no. 2, pp. 163–167, 2003.
[129]
C. D. Bonavita, V. Bisagno, C. G. Bonelli, G. B. Acosta, M. C. Rubio, and S. I. Wikinski, “Tolerance to the sedative effect of lorazepam correlates with a diminution in cortical release and affinity for glutamate,” Neuropharmacology, vol. 42, no. 5, pp. 619–625, 2002.
[130]
C. Allison and J. A. Pratt, “Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and AMPA receptor characteristics,” Neuropsychopharmacology, vol. 31, no. 3, pp. 602–619, 2006.
[131]
B. J. Van Sickle and E. I. Tietz, “Selective enhancement of AMPA receptor-mediated function in hippocampal CA1 neurons from chronic benzodiazepine-treated rats,” Neuropharmacology, vol. 43, no. 1, pp. 11–27, 2002.
[132]
T. Aitta-aho, O. Y. Vekovischeva, P. J. Neuvonen, and E. R. Korpi, “Reduced benzodiazepine tolerance, but increased flumazenil-precipitated withdrawal in AMPA-receptor GluR-A subunit-deficient mice,” Pharmacology Biochemistry and Behavior, vol. 92, no. 2, pp. 283–290, 2009.
[133]
H. R. Lyons, M. B. Land, T. T. Gibbs, and D. H. Farb, “Distinct signal transduction pathways for GABA-induced GABAA receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels,” Journal of Neurochemistry, vol. 78, no. 5, pp. 1114–1125, 2001.
[134]
B. Lu, P. T. Pang, and N. H. Woo, “The yin and yang of neurotrophin action,” Nature Reviews Neuroscience, vol. 6, no. 8, pp. 603–614, 2005.
[135]
I. Brunig, S. Penschuck, B. Berninger, J. Benson, and J. M. Fritschy, “BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of receptor surface expression,” European Journal of Neuroscience, vol. 13, no. 7, pp. 1320–1328, 2001.
[136]
J. N. Jovanovic, P. Thomas, J. T. Kittler, T. G. Smart, and S. J. Moss, “Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating receptor phosphorylation, activity, and cell-surface stability,” Journal of Neuroscience, vol. 24, no. 2, pp. 522–530, 2004.
[137]
T. Tanaka, H. Saito, and N. Matsuki, “Inhibition of synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus,” Journal of Neuroscience, vol. 17, no. 9, pp. 2959–2966, 1997.
[138]
Q. Cheng and H. H. Yeh, “Brain-derived neurotrophic factor attenuates mouse cerebellar granule cell receptor-mediated responses via postsynaptic mechanisms,” Journal of Physiology, vol. 548, no. 3, pp. 711–721, 2003.
[139]
C. Henneberger, R. Jüttner, T. Rothe, and R. Grantyn, “Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus,” Journal of Neurophysiology, vol. 88, no. 2, pp. 595–603, 2002.
[140]
Y. Mizoguchi, T. Kanematsu, M. Hirata, and J. Nabekura, “A rapid increase in the total number of cell surface functional receptors induced by brain-derived neurotrophic factor in rat visual cortex,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 44097–44102, 2003.
[141]
M. M. Bolton, A. J. Pittman, D. C. Lo, and Lo, “Brain-derived neurotrophic factor differentially regulates excitatory and inhibitory synaptic transmission in hippocampal cultures,” Journal of Neuroscience, vol. 20, no. 9, pp. 3221–3232, 2000.
[142]
S. A. Hewitt and J. S. Bains, “Brain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism,” Journal of Neurophysiology, vol. 95, no. 4, pp. 2193–2198, 2006.
[143]
Z. Yan, “Regulation of GABAergic inhibition by serotonin signaling in prefrontal cortex: molecular mechanisms and functional implications,” Molecular Neurobiology, vol. 26, no. 2-3, pp. 203–216, 2002.
[144]
J. Feng, X. Cai, J. Zhao, and Z. Yan, “Serotonin receptors modulate receptor channels through activation of anchored protein kinase C in prefrontal cortical neurons,” Journal of Neuroscience, vol. 21, no. 17, pp. 6502–6511, 2001.
[145]
N. J. Brandon, J. N. Jovanovic, T. G. Smart, and S. J. Moss, “Receptor for activated C kinase-1 facilitates protein kinase C-dependent phosphorylation and functional modulation of receptors with the activation of G-protein-coupled receptors,” Journal of Neuroscience, vol. 22, no. 15, pp. 6353–6361, 2002.
[146]
X. Wang, P. Zhong, and Z. Yan, “Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex,” Journal of Neuroscience, vol. 22, no. 21, pp. 9185–9193, 2002.
[147]
D. J. Nutt, P. J. Cowen, and M. Franklin, “The effect of diazepam on indices of 5-HT function in man,” Pharmacology Biochemistry and Behavior, vol. 24, no. 5, pp. 1491–1495, 1986.
[148]
A. Khan and D. J. Haleem, “Tolerance in the anxiolytic profile following repeated administration of diazepam but not buspirone is associated with a decrease in the responsiveness of postsynaptic 5-HT-1A receptors,” Acta Biologica Hungarica, vol. 58, no. 4, pp. 345–357, 2007.
[149]
A. A. Hegarty and W. H. Vogel, “The effect of acute and chronic diazepam treatment on stress-induced changes in cortical dopamine in the rat,” Pharmacology Biochemistry and Behavior, vol. 52, no. 4, pp. 771–778, 1995.
[150]
J. J. Lambert, M. A. Cooper, R. D. J. Simmons, C. J. Weir, and D. Belelli, “Neurosteroids: endogenous allosteric modulators of receptors,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S48–S58, 2009.
[151]
M. B. Herd, D. Belelli, and J. J. Lambert, “Neurosteroid modulation of synaptic and extrasynaptic receptors,” Pharmacology and Therapeutics, vol. 116, no. 1, pp. 20–34, 2007.
[152]
N. Usami, T. Yamamoto, S. Shintani et al., “Substrate specificity of human 3(20)α-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines,” Biological and Pharmaceutical Bulletin, vol. 25, no. 4, pp. 441–445, 2002.
[153]
M. A. Wilson and R. Biscardi, “Effects of gender and gonadectomy on responses to chronic benzodiazepine receptor agonist exposure in rats,” European Journal of Pharmacology, vol. 215, no. 1, pp. 99–107, 1992.
[154]
D. S. Reddy and S. K. Kulkarni, “Neurosteroid coadministration prevents development of tolerance and augments recovery from benzodiazepine withdrawal anxiety and hyperactivity in mice,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 19, no. 6, pp. 395–405, 1997.
[155]
N. R. Mirza and E. O. Nielsen, “Do subtype-selective gamma-aminobutyric acid A receptor modulators have a reduced propensity to induce physical dependence in mice?” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 3, pp. 1378–1385, 2006.
[156]
J. R. Atack, K. A. Wafford, S. J. Tye, et al., “TPA023 [7-(1, 1-dimethylethyl)-6-(2-ethyl-2H-1, 2, 4-triazol-3-ylmethoxy)-3-(2-fluor ophenyl)-1, 2, 4-triazolo[4, 3-b]pyridazine], an agonist selective for alpha2- and alpha3-containing receptors, is a nonsedating anxiolytic in rodents and primates,” Journal of Pharmacology and Experimental Therapeutics, vol. 316, no. 1, pp. 410–422, 2006.
[157]
J. Knabl, R. Witschi, K. Hosl et al., “Reversal of pathological pain through specific spinal receptor subtypes,” Nature, vol. 451, no. 7176, pp. 330–334, 2008.
[158]
G. Zammit, “Comparative tolerability of newer agents for insomnia,” Drug Safety, vol. 32, no. 9, pp. 735–748, 2009.
[159]
A. Ravishankar and T. Carnwath, “Zolpidem tolerance and dependence—two case reports,” Journal of Psychopharmacology, vol. 12, no. 1, pp. 103–104, 1998.
[160]
D. J. Sanger and B. Zivkovic, “Differential development of tolerance to the depressant effects of benzodiazepine and non-benzodiazepine agonists at the omega (BZ) modulatory sites of receptors,” Neuropharmacology, vol. 31, no. 7, pp. 693–700, 1992.
[161]
D. J. Sanger and B. Zivkovic, “Investigation of the development of tolerance to the actions of zolpidem and midazolam,” Neuropharmacology, vol. 26, no. 10, pp. 1513–1518, 1987.
[162]
G. Perrault, E. Morel, D. J. Sanger, and B. Zivkovic, “Lack of tolerance and physical dependence upon repeated treatment with the novel hypnotic zolpidem,” Journal of Pharmacology and Experimental Therapeutics, vol. 263, no. 1, pp. 298–303, 1992.
[163]
R. Scherkl, D. Kurudi, and H. H. Frey, “Clorazepate in dogs: tolerance to the anticonvulsant effect and signs of physical dependence,” Epilepsy Research, vol. 3, no. 2, pp. 144–150, 1989.
[164]
J. R. Atack, “Subtype-selective receptor modulation yields a novel pharmacological profile: the design and development of TPA023,” Advances in Pharmacology, vol. 57, pp. 137–185, 2009.
[165]
N. A. Ator, “Zaleplon and triazolam: drug discrimination, plasma levels, and self-administration in baboons,” Drug and Alcohol Dependence, vol. 61, no. 1, pp. 55–68, 2000.