|
Trimeric Tau Is Toxic to Human Neuronal Cells at Low Nanomolar ConcentrationsDOI: 10.1155/2013/260787 Abstract: In Alzheimer’s disease (AD), tau aggregates into fibrils and higher order neurofibrillary tangles, a key histopathological feature of AD. However, soluble oligomeric tau species may play a more critical role in AD progression since these tau species correlate better with neuronal loss and cognitive dysfunction. Recent studies show that extracellular oligomeric tau can inhibit memory formation and synaptic function and also transmit pathology to neighboring neurons. However, the specific forms of oligomeric tau involved in toxicity are still unknown. Here, we used two splice variants of recombinant human tau and generated monomeric, dimeric, and trimeric fractions of each isoform. The composition of each fraction was verified chromatographically and also by atomic force microscopy. The toxicity of each fraction toward both human neuroblastoma cells and cholinergic-like neurons was assessed. Trimeric, but not monomeric or dimeric, tau oligomers of both splice variants were neurotoxic at low nanomolar concentrations. Further characterization of tau oligomer species with disease-specific modifications and morphologies is necessary to identify the best targets for the development of biomarker and therapeutic development for AD and related tauopathies. 1. Introduction Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment, cerebral atrophy, and neuronal loss, with death generally occurring four to eight years after diagnosis [1]. Two pathological hallmarks of AD, extracellular neuritic plaques primarily composed of amyloid beta (Aβ) and intracellular neurofibrillary tangles (NFTs) primarily composed of tau protein, were originally identified in 1907 by Dr. Alois Alzheimer [2]. While great strides have been made in understanding the mechanisms that promote aggregation of Aβ and tau into the hallmark plaques and tangles, comparatively little progress has been achieved in halting or curing the disease. Analysis of familial AD cases implicated production of Aβ as a primary factor in progression of AD, leading to the rise of the amyloid cascade hypothesis which states that Aβ misfolding and aggregation initiates AD pathogenesis and triggers other effects such as tau phosphorylation, aggregation, and tangle formation [3]. The amyloid hypothesis had dominated the field for more than a decade and has driven numerous clinical studies for therapeutic interventions including several immunization studies targeting Aβ [4–6]. However failure of several clinical trials targeting Aβ has cast doubt on its relevance as a
|