全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Protein-Folding Systems in Plant Cells

DOI: 10.1155/2013/585431

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plants are unique among eukaryotes in having evolved organelles: the protein storage vacuole, protein body, and chloroplast. Disulfide transfer pathways that function in the endoplasmic reticulum (ER) and chloroplasts of plants play critical roles in the development of protein storage organelles and the biogenesis of chloroplasts, respectively. Disulfide bond formation requires the cooperative function of disulfide-generating enzymes (e.g., ER oxidoreductase 1), which generate disulfide bonds de novo, and disulfide carrier proteins (e.g., protein disulfide isomerase), which transfer disulfides to substrates by means of thiol-disulfide exchange reactions. Selective molecular communication between disulfide-generating enzymes and disulfide carrier proteins, which reflects the molecular and structural diversity of disulfide carrier proteins, is key to the efficient transfer of disulfides to specific sets of substrates. This review focuses on recent advances in our understanding of the mechanisms and functions of the various disulfide transfer pathways involved in oxidative protein folding in the ER, chloroplasts, and mitochondria of plants. 1. Introduction The endoplasmic reticulum (ER) is the first organelle in the secretory pathway, and this dynamic and highly specialized organelle contains enzymes and chaperones that mediate the folding and assembly of newly synthesized proteins [1]. A key step in oxidative protein folding is the formation of disulfide bonds, which covalently link the side chains of pairs of Cys residues, impart thermodynamic and mechanical stability to proteins, and control protein folding and activity [2]. The introduction of disulfide bonds into polypeptides requires the cooperative function of a pair of enzymes, a de novo disulfide-generating enzyme (e.g., ER oxidoreductase 1 [ERO1]) and a disulfide carrier protein (e.g., protein disulfide isomerase [PDI]) [3]. PDIs, which are ubiquitous thiol-disulfide oxidoreductases in all eukaryotic cells, directly donate disulfides to substrate proteins by means of thiol-disulfide exchange reactions. The oxidized form of PDI is regenerated by ERO1, which relays the oxidizing power from molecular oxygen to the reduced form of PDI (Figure 1). The genomes of higher plants, including Arabidopsis thaliana, Glycine max (soybean), Oryza sativa (rice), and Zea mays (maize), encode approximately 10 to 20 members of the PDI family, which show wide variation in the organization of their thioredoxin (TRX)-fold domains [4, 5]. Although the network of enzymes involved in disulfide bond formation has not yet

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133