Prion diseases are fatal neurodegenerative sporadic, inherited, or acquired disorders. In humans, Creutzfeldt-Jakob disease is the most studied prion disease. In animals, the most frequent prion diseases are scrapie in sheep and goat, bovine spongiform encephalopathy in cattle, and the emerging chronic wasting disease in wild and captive deer in North America. The hallmark of prion diseases is the deposition in the brain of PrPSc, an abnormal β-sheet-rich form of the cellular prion protein (PrPC) (Prusiner 1982). According to the prion hypothesis, PrPSc can trigger the autocatalytic conversion of PrPC into PrPSc, presumably in the presence of cofactors (lipids and small RNAs) that have been recently identified. In this review, we will come back to the original works that led to the discovery of prions and to the protein-only hypothesis proposed by Dr. Prusiner. We will then describe the recent reports on mammalian synthetic prions and recombinant prions that strongly support the protein-only hypothesis. The new concept of “deformed templating” regarding a new mechanism of PrPSc formation and replication will be exposed. The review will end with a chapter on the prion-like propagation of other neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease and tauopathies. 1. The Story of the Prion Protein That Was Mistaken for a Virus Prion diseases and prion infectious agents [1] are among the most fascinating biological topics of the twentieth century and have been under the spotlight for the last 30 years, particularly due to the striking epidemic of bovine spongiform encephalopathy (BSE), which started in Great Britain in the mid-eighties and then spread to other European countries [2]. The transmission of the bovine prion agent to humans, possibly through consumption of prion-contaminated beef products, led to the emergence of a new human prion disease, named “variant” Creutzfeldt-Jakob disease (vCJD), in young people [3]. Recently, several cases of secondary human-to-human transmission of vCJD through transfusion of prion-contaminated blood [4–6] have raised doubts within the scientific community about the safety of blood products and highlighted the crucial need of diagnostic tests for prion detection in blood. Currently, the development of reliable blood tests and of therapies is the main mission of scientists working in the prion field. Historically, the infectious agent that causes prion diseases was supposed to be an atypical virus belonging to the category of “slow viruses” [7, 8]. Then, in 1967, Pattison and colleagues reported [9]
References
[1]
S. B. Prusiner, “Novel proteinaceous infectious particles cause scrapie,” Science, vol. 216, no. 4542, pp. 136–144, 1982.
[2]
D. Dormont, “Prion diseases: pathogenesis and public health concerns,” FEBS Letters, vol. 529, no. 1, pp. 17–21, 2002.
[3]
R. G. Will, J. W. Ironside, M. Zeidler et al., “A new variant of Creutzfeldt-Jakob disease in the UK,” The Lancet, vol. 347, no. 9006, pp. 921–925, 1996.
[4]
A. H. Peden, M. W. Head, D. L. Ritchie, P. J. E. Bell, and P. J. W. Ironside, “Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient,” The Lancet, vol. 364, no. 9433, pp. 527–529, 2004.
[5]
B. Sibbald, “UK patient first to contract vCJD via blood transfusion,” Canadian Medical Association Journal, vol. 170, no. 7, p. 1087, 2004.
[6]
S. J. Wroe, S. Pal, D. Siddique et al., “Clinical presentation and pre-mortem diagnosis of variant Creutzfeldt-Jakob disease associated with blood transfusion: a case report,” The Lancet, vol. 368, no. 9552, pp. 2061–2067, 2006.
[7]
D. C. Gajdusek and C. J. Gibbs Jr., “Slow, latent and temperate virus infections of the central nervous system,” Research Publications—Association for Research in Nervous and Mental Disease, vol. 44, pp. 254–280, 1968.
[8]
R. H. Kimberlin, “Scrapie agent: prions or virinos?” Nature, vol. 297, no. 5862, pp. 107–108, 1982.
[9]
I. H. Pattison and K. M. Jones, “The possible nature of the transmissible agent of scrapie,” Veterinary Record, vol. 80, no. 1, pp. 2–9, 1967.
[10]
T. Alper, W. A. Cramp, D. A. Haig, and M. C. Clarke, “Does the agent of scrapie replicate without nucleic acid?” Nature, vol. 214, no. 5090, pp. 764–766, 1967.
[11]
J. S. Griffith, “Self-replication and scrapie,” Nature, vol. 215, no. 5105, pp. 1043–1044, 1967.
[12]
S. B. Prusiner, M. P. McKinley, D. F. Groth, et al., “Scrapie agent contains a hydrophobic protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6675–6679, 1981.
[13]
S. B. Prusiner, “Prions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13363–13383, 1998.
[14]
R. Riek, S. Hornemann, G. Wider, M. Billeter, R. Glockshuber, and K. Wuthrich, “NMR structure of the mouse prion protein domain PrP(121-231),” Nature, vol. 382, no. 6587, pp. 180–182, 1996.
[15]
K.-M. Pan, M. Baldwin, J. Nguyen et al., “Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 10962–10966, 1993.
[16]
C. Govaerts, H. Wille, S. B. Prusiner, and F. E. Cohen, “Evidence for assembly of prions with left-handed β-helices into trimers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8342–8347, 2004.
[17]
J. R. Silveira, G. J. Raymond, A. G. Hughson et al., “The most infectious prion protein particles,” Nature, vol. 437, no. 7056, pp. 257–261, 2005.
[18]
G. P. Saborio, B. Permanne, and C. Soto, “Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding,” Nature, vol. 411, no. 6839, pp. 810–813, 2001.
[19]
I. V. Baskakov, G. Legname, S. B. Prusiner, and F. E. Cohen, “Folding of prion protein to its native alpha-helical conformation is under kinetic control,” The Journal of Biological Chemistry, vol. 276, no. 23, pp. 19687–19690, 2001.
[20]
I. V. Baskakov, G. Legname, M. A. Baldwin, S. B. Prusiner, and F. E. Cohen, “Pathway complexity of prion protein assembly into amyloid,” The Journal of Biological Chemistry, vol. 277, no. 24, pp. 21140–21148, 2002.
[21]
B. Février, D. Vilette, H. Laude, and G. Raposo, “Exosomes: a bubble ride for prions?” Traffic, vol. 6, no. 1, pp. 10–17, 2005.
[22]
L. J. Vella, R. A. Sharples, V. A. Lawson, C. L. Masters, R. Cappai, and A. F. Hill, “Packaging of prions into exosomes is associated with a novel pathway of PrP processing,” Journal of Pathology, vol. 211, no. 5, pp. 582–590, 2007.
[23]
B. Caughey and P. T. Lansbury Jr., “Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders,” Annual Review of Neuroscience, vol. 26, pp. 267–298, 2003.
[24]
S. Simoneau, H. Rezaei, N. Salès et al., “In vitro and in vivo neurotoxicity of prion protein oligomers,” PLoS Pathogens, vol. 3, no. 8, article e125, 2007.
[25]
J. A. Hainfeller, S. Brantner-Inthaler, L. Cervenakova et al., “The original Gerstmann-Straussler-Scheinker family of austria: divergent clinicopathological phenotypes but constant PrP genotype,” Brain Pathology, vol. 5, no. 3, pp. 201–211, 1995.
[26]
M. H. Groschup and A. Buschmann, “Rodent models for prion diseases,” Veterinary Research, vol. 39, no. 4, article 32, 2008.
[27]
I. H. Solomon, J. A. Schepker, and D. A. Harris, “Prion neurotoxicity: insights from prion protein mutants,” Current Issues in Molecular Biology, vol. 12, no. 2, pp. 51–61, 2010.
[28]
H. Bueler, A. Aguzzi, A. Sailer et al., “Mice devoid of PrP are resistant to scrapie,” Cell, vol. 73, no. 7, pp. 1339–1347, 1993.
[29]
S. B. Prusiner, D. Groth, A. Serban et al., “Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10608–10612, 1993.
[30]
G. R. Mallucci, M. D. White, M. Farmer et al., “Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice,” Neuron, vol. 53, no. 3, pp. 325–335, 2007.
[31]
D. Westaway, S. J. DeArmond, J. Cayetano-Canlas et al., “Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins,” Cell, vol. 76, no. 1, pp. 117–129, 1994.
[32]
C. J. Sigurdson, K. P. R. Nilsson, S. Hornemann et al., “De novo generation of a transmissible spongiform encephalopathy by mouse transgenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, pp. 304–309, 2009.
[33]
J. C. Watts, K. Giles, J. St?hr et al., “Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 9, pp. 3498–3503, 2012.
[34]
K. K. Hsiao, M. Scott, D. Foster, D. F. Groth, S. J. DeArmond, and S. B. Prusiner, “Spontaneous neurodegeneration in transgenic mice with mutant prion protein,” Science, vol. 250, no. 4987, pp. 1587–1590, 1990.
[35]
G. C. Telling, T. Haga, M. Torchia, P. Tremblay, S. J. DeArmond, and S. B. Prusiner, “Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice,” Genes and Development, vol. 10, no. 14, pp. 1736–1750, 1996.
[36]
R. Chiesa, P. Piccardo, B. Ghetti, and D. A. Harris, “Neurological illness in transgenic mice expressing a prion protein with an insertional mutation,” Neuron, vol. 21, no. 6, pp. 1339–1351, 1998.
[37]
R. Chiesa, P. Piccardo, S. Dossena et al., “Bax deletion prevents neuronal loss but not neurological symptoms in a transgenic model of inherited prion disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 1, pp. 238–243, 2005.
[38]
Y. Friedman-Levi, Z. Meiner, T. Canello et al., “Fatal prion disease in a mouse model of genetic E200K Creutzfeldt-Jakob disease,” PLoS Pathogens, vol. 7, no. 11, Article ID e1002350, 2011.
[39]
W. S. Jackson, A. W. Borkowski, H. Faas et al., “Spontaneous generation of prion infectivity in fatal familial insomnia knockin mice,” Neuron, vol. 63, no. 4, pp. 438–450, 2009.
[40]
M. Fischer, T. Rulicke, A. Raeber et al., “Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie,” EMBO Journal, vol. 15, no. 6, pp. 1255–1264, 1996.
[41]
D. W. Colby, R. Wain, I. V. Baskakov et al., “Protease-sensitive synthetic prions,” PLoS Pathogens, vol. 6, no. 1, Article ID e1000736, 2010.
[42]
P. Gambetti, G. Puoti, and W.-Q. Zou, “Variably protease-sensitive prionopathy: a novel disease of the prion protein,” Journal of Molecular Neuroscience, vol. 45, no. 3, pp. 422–424, 2011.
[43]
I. Mehlhorn, D. Groth, J. St?ckel et al., “High-level expression and characterization of a purified 142-residue polypeptide of the prion protein,” Biochemistry, vol. 35, no. 17, pp. 5528–5537, 1996.
[44]
H. Zhana, J. St?ckel, I. Mehlhorn et al., “Physical studies of conformational plasticity in a recombinant prion protein,” Biochemistry, vol. 36, no. 12, pp. 3543–3553, 1997.
[45]
G. Legname, I. V. Baskakov, H.-O. B. Nguyen et al., “Synthetic mammalian prions,” Science, vol. 305, no. 5684, pp. 673–676, 2004.
[46]
D. W. Colby, K. Giles, G. Legname et al., “Design and construction of diverse mammalian prion strains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20417–20422, 2009.
[47]
N. Makarava, G. G. Kovacs, O. Bocharova et al., “Recombinant prion protein induces a new transmissible prion disease in wild-type animals,” Acta Neuropathologica, vol. 119, no. 2, pp. 177–187, 2010.
[48]
N. Makarava, G. G. Kovacs, R. Savtchenko et al., “Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease,” PLoS Pathogens, vol. 7, no. 12, Article ID e1002419, 2011.
[49]
N. Makarava, G. G. Kovacs, R. Savtchenko et al., “A new mechanism for transmissible prion diseases,” Journal of Neuroscience, vol. 32, no. 21, pp. 7345–7355, 2012.
[50]
F. Wang, X. Wang, C.-G. Yuan, and J. Ma, “Generating a prion with bacterially expressed recombinant prion protein,” Science, vol. 327, no. 5969, pp. 1132–1135, 2010.
[51]
N. R. Deleault, J. R. Piro, D. J. Walsh et al., “Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids,” Proceedings of the National Academy of Sciences of the United States of America, no. 22, pp. 8546–8551, 2012.
[52]
N. R. Deleault, D. J. Walsh, J. R. Piro et al., “Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 28, pp. E1938–E1946, 2012.
[53]
H. F. Baker, R. M. Ridley, L. W. Duchen, T. J. Crow, and C. J. Bruton, “Induction of β(A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate—comparison with transmission of spongiform encephalopathy,” Molecular Neurobiology, vol. 8, no. 1, pp. 25–39, 1994.
[54]
M. D. Kane, W. J. Lipinski, M. J. Callahan et al., “Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice,” Journal of Neuroscience, vol. 20, no. 10, pp. 3606–3611, 2000.
[55]
L. C. Walker, F. Bian, M. J. Callahan, W. J. Lipinski, R. A. Durham, and H. LeVine, “Modeling Alzheimer's disease and other proteopathies in vivo: is seeding the key?” Amino Acids, vol. 23, no. 1–3, pp. 87–93, 2002.
[56]
M. Meyer-Luehmann, J. Coomaraswamy, T. Bolmont et al., “Exogenous induction of cerebral β-amyloidogenesis is governed bf agent and host,” Science, vol. 313, no. 5794, pp. 1781–1784, 2006.
[57]
Y. S. Eisele, U. Obermüller, G. Heilbronner et al., “Peripherally applied Aβ-containing inoculates induce cerebral β-amyloidosis,” Science, vol. 330, no. 6006, pp. 980–982, 2010.
[58]
R. Morales, C. Duran-Aniotz, J. Castilla, L. D. Estrada, and C. Soto, “De novo induction of amyloid-β deposition in vivo,” Molecular Psychiatry, vol. 17, no. 12, pp. 1347–1353, 2011.
[59]
F. Clavaguera, T. Bolmont, R. A. Crowther et al., “Transmission and spreading of tauopathy in transgenic mouse brain,” Nature Cell Biology, vol. 11, no. 7, pp. 909–913, 2009.
[60]
A. de Calignon, M. Polydoro, M. Suárez-Calvet et al., “Propagation of tau pathology in a model of early Alzheimer's disease,” Neuron, vol. 73, no. 4, pp. 685–697, 2012.
[61]
J. H. Kordower, Y. Chu, R. A. Hauser, T. B. Freeman, and C. W. Olanow, “Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease,” Nature Medicine, vol. 14, no. 5, pp. 504–506, 2008.
[62]
J.-Y. Li, E. Englund, J. L. Holton et al., “Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation,” Nature Medicine, vol. 14, no. 5, pp. 501–503, 2008.
[63]
K. C. Luk, V. M. Kehm, B. Zhang, P. O'Brien, J. Q. Trojanowski, and V. M. Lee, “Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice,” The Journal of Experimental Medicine, no. 5, pp. 975–986, 2012.
[64]
K. C. Luk, V. Kehm, J. Carroll et al., “Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice,” Science, vol. 338, no. 6109, pp. 949–953, 2012.
[65]
J. Stohr, J. C. Watts, Z. L. Mensinger et al., “Purified and synthetic Alzheimer's amyloid beta (Abeta) prions,” Proceedings of the National Academy of Sciences of the United States of America, no. 27, pp. 11025–11030, 2012.
[66]
C. H. Hawkes, K. Del Tredici, and H. Braak, “Parkinson's disease: the dual hit theory revisited,” Annals of the New York Academy of Sciences, vol. 1170, pp. 615–622, 2009.
[67]
H. Y. E. Chan, J. M. Warrick, I. Andriola, D. Merry, and N. M. Bonini, “Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells,” Human Molecular Genetics, vol. 11, no. 23, pp. 2905–2917, 2002.
[68]
P.-H. Ren, J. E. Lauckner, I. Kachirskaia, J. E. Heuser, R. Melki, and R. R. Kopito, “Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates,” Nature Cell Biology, vol. 11, no. 2, pp. 219–225, 2009.