Age-related misfolding and aggregation of disease-linked proteins in selective brain regions is a characteristic of neurodegenerative diseases. Although neuropathological aggregates that characterize these various diseases are found at sites other than synapses, increasing evidence supports the idea that synapses are where the pathogenesis begins. Understanding these diseases is hampered by our lack of knowledge of what the normal functions of these proteins are and how they are affected by aging. Evidence has supported the idea that neurodegenerative disease-linked proteins have a common propensity for prion protein-like cell-to-cell propagation. However, it is not thought that the prion-like quality of these proteins/peptides that allows their cell-to-cell transmission implies a role for human-to-human spread in common age-related neurodegenerative diseases. It will be important to better understand the molecular and cellular mechanisms governing the role of these aggregating proteins in neural function, especially at synapses, how their propagation occurs and how pathogenesis is promoted by aging. 1. Synapses The brain is particularly vulnerable to degenerative diseases of ageing. Aberrant aggregation of proteins/peptides is the common theme among these diseases. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common age-related neurodegenerative diseases, while other less common, albeit devastating, neurodegenerative diseases include Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), prion diseases, and frontotemporal dementia (FTD). Although the specific protein aggregates and selective cellular vulnerabilities differ, shared disease mechanisms are increasingly apparent among neurodegenerative diseases and next to aberrant protein aggregation also include anatomically selective cell-to-cell propagation. Major themes of research on these diseases have included therapeutic neurotransmitter replacement, most successful with dopamine for PD, elucidating the biology of aberrant protein misfolding, and trying to understand how ageing promotes the development of these diseases. More recently, synapses have moved more to the center of research on these diseases [1, 2]. Neurites (axons and dendrites) and synapses are a unique feature of neurons and play fundamental roles in brain function. Furthermore, the aggregation-prone proteins linked pathologically and genetically to neurodegenerative diseases are normally present particularly at synapses. For example, the PD-linked protein -synuclein is known to normally reside
References
[1]
L. Mucke and D. J. Selkoe, “Neurotoxicity of amyloid β-protein: synaptic and network dysfunction,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 7, Article ID a006338, 2012.
[2]
G. K. Gouras, D. Tampellini, R. H. Takahashi, and E. Capetillo-Zarate, “Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer's disease,” Acta Neuropathologica, vol. 119, no. 5, pp. 523–541, 2010.
[3]
A. Bellucci, M. Zaltieri, L. Navarria, J. Grigoletto, C. Missale, and P. Spano, “From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease,” Brain Research, vol. 1476, pp. 183–202, 2012.
[4]
L. Stefanis, “α-Synuclein in Parkinson's disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 2, Article ID 009399, 2012.
[5]
C. Haass, C. Kaether, G. Thinakaran G, and S. Sisodia, “Trafficking and proteolytic processing of APP,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 5, Article ID 006270, 2012.
[6]
J. J. Lah, C. J. Heilman, N. R. Nash et al., “Light and electron microscopic localization of presenilin-1 in primate brain,” The Journal of Neuroscience, vol. 17, no. 6, pp. 1971–1980, 1997.
[7]
H. Zheng, M. Jiang, M. E. Trumbauer et al., “β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity,” Cell, vol. 81, no. 4, pp. 525–531, 1995.
[8]
R. Chiesa and D. A. Harris, “Fishing for prion protein function,” PLoS Biology, vol. 7, no. 3, pp. 0439–0443, 2009.
[9]
F. Kamenetz, T. Tomita, H. Hsieh et al., “APP processing and synaptic function,” Neuron, vol. 37, no. 6, pp. 925–937, 2003.
[10]
D. Tampellini, N. Rahman, E. F. Gallo et al., “Synaptic activity reduces intraneuronal Aβ, promotes APP transport to synapses, and protects against Aβ-related synaptic alterations,” The Journal of Neuroscience, vol. 29, no. 31, pp. 9704–9713, 2009.
[11]
D. Tampellini, E. Capetillo-Zarate, M. Dumont et al., “Effects of synaptic modulation on β-amyloid, synaptophysin, and memory performance in Alzheimer's disease transgenic mice,” The Journal of Neuroscience, vol. 30, no. 43, pp. 14299–14304, 2010.
[12]
Y. Ihara, M. Morishima-Kawashima, and R. Nixon, “The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 8, 2012.
[13]
M. D. Ehlers, “Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system,” Nature Neuroscience, vol. 6, no. 3, pp. 231–242, 2003.
[14]
B. A. Bahr and J. Bendiske, “The neuropathogenic contributions of lysosomal dysfunction,” Journal of Neurochemistry, vol. 83, no. 3, pp. 481–489, 2002.
[15]
A. M. Cataldo, C. M. Peterhoff, J. C. Troncoso, T. Gomez-Isla, B. T. Hyman, and R. A. Nixon, “Endocytic pathway abnormalities precede amyloid β deposition in sporadic alzheimer's disease and down syndrome: differential effects of APOE genotype and presenilin mutations,” American Journal of Pathology, vol. 157, no. 1, pp. 277–286, 2000.
[16]
R. A. Nixon, “Autophagy in neurodegenerative disease: friend, foe or turncoat?” Trends in Neurosciences, vol. 29, no. 9, pp. 528–535, 2006.
[17]
D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009.
[18]
A. Caccamo, S. Majumder, A. Richardson, R. Strong, and S. Oddo, “Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments,” Journal of Biological Chemistry, vol. 285, no. 17, pp. 13107–13120, 2010.
[19]
P. Spilman, N. Podlutskaya, M. J. Hart et al., “Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of alzheimer's disease,” PLoS ONE, vol. 5, no. 4, Article ID e9979, 2010.
[20]
T. Ma, C. A. Hoeffer, E. Capetillo-Zarate et al., “Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer's disease,” PLoS ONE, vol. 5, no. 9, Article ID e12845, pp. 1–10, 2010.
[21]
M. Park, E. C. Penick, J. G. Edwards, J. A. Kauer, and M. D. Ehlers, “Recycling endosomes supply AMPA receptors for LTP,” Science, vol. 305, no. 5692, pp. 1972–1975, 2004.
[22]
L. Rajendran and W. Annaert, “Membrane trafficking pathways in Alzheimer's disease,” Traffic, vol. 13, no. 6, pp. 759–770, 2012.
[23]
R. H. Takahashi, T. A. Milner, F. Li et al., “Intraneuronal Alzheimer Aβ42 accumulates in multivesicular bodies and is associated with synaptic pathology,” American Journal of Pathology, vol. 161, no. 5, pp. 1869–1879, 2002.
[24]
R. H. Takahashi, C. G. Almeida, P. F. Kearney et al., “Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain,” The Journal of Neuroscience, vol. 24, no. 14, pp. 3592–3599, 2004.
[25]
E. Capetillo-Zarate, L. Gracia, F. Yu et al., “High-resolution 3D reconstruction reveals intra-synaptic amyloid fibrils,” American Journal of Pathology, vol. 179, no. 5, pp. 2551–2558, 2011.
[26]
C. G. Almeida, R. H. Takahashi, and G. K. Gouras, “β-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system,” The Journal of Neuroscience, vol. 26, no. 16, pp. 4277–4288, 2006.
[27]
G. Skibinski, N. J. Parkinson, J. M. Brown et al., “Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia,” Nature Genetics, vol. 37, no. 8, pp. 806–808, 2005.
[28]
A. M. Pooler, E. C. Phillips, D. H. Lau, W. Noble, and D. P. Hanger, “Physiological release of endogenous tau is stimulated by neuronal activity,” EMBO Reports, vol. 14, no. 4, pp. 389–394, 2013.
[29]
B. Frost and M. I. Diamond, “Prion-like mechanisms in neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 11, no. 3, pp. 155–159, 2010.
[30]
J.-C. Cossec, C. Marquer, M. Panchal, A. N. Lazar, C. Duyckaerts, and M.-C. Potier, “Cholesterol changes in Alzheimer's disease: methods of analysis and impact on the formation of enlarged endosomes,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 839–845, 2010.
[31]
S. Gr?sgen, M. O. W. Grimm, P. Frie?, and T. Hartmann, “Role of amyloid beta in lipid homeostasis,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 966–974, 2010.
[32]
L. Hedskog, C. M. Pinho, R. Filadi, et al., “Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and related models,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 19, pp. 7916–7921, 2013.
[33]
J. Li, T. Kanekiyo, M. Shinohara, et al., “Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms,” Journal of Biological Chemistry, vol. 287, no. 53, pp. 44593–44601, 2012.
[34]
M. A. Kuszczyk, S. Sanchez, J. Pankiewicz, et al., “Blocking the interaction between apolipoprotein E and Aβ reduces intraneuronal accumulation of Aβ and inhibits synaptic degeneration,” American Journal of Pathology, vol. 182, no. 5, pp. 1750–1768, 2013.
[35]
L. Melman, H. J. Geuze, Y. Li et al., “Proteasome regulates the delivery of LDL receptor-related protein into the degradation pathway,” Molecular Biology of the Cell, vol. 13, no. 9, pp. 3325–3335, 2002.
[36]
W.-Q. Zou and N. R. Cashman, “Acidic pH and detergents enhance in vitro conversion of human brain PrPC to a PrPSc-like form,” Journal of Biological Chemistry, vol. 277, no. 46, pp. 43942–43947, 2002.
[37]
P. M. Gorman, C. M. Yip, P. E. Fraser, and A. Chakrabartty, “Alternate aggregation pathways of the Alzheimer β-amyloid peptide: Aβ association kinetics at endosomal pH,” Journal of Molecular Biology, vol. 325, no. 4, pp. 743–757, 2003.
[38]
W. B. Stine Jr., K. N. Dahlgren, G. A. Krafft, and M. J. LaDu, “In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 11612–11622, 2003.
[39]
A. Y. Yang, D. Chandswangbhuvana, L. Margol, and C. G. Glabe, “Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Aβ1-42 pathogenesis,” Journal of Neuroscience Research, vol. 52, pp. 691–698, 1998.
[40]
K. Ditaranto, T. L. Tekirian, and A. J. Yang, “Lysosomal membrane damage in soluble Aβ-mediated cell death in Alzheimer's disease,” Neurobiology of Disease, vol. 8, no. 1, pp. 19–31, 2001.
[41]
S. B. Prusiner, “Cell biology. A unifying role for prions in neurodegenerative diseases,” Science, vol. 336, no. 6088, pp. 1511–1513, 2012.
[42]
G. Suzuki, N. Shimazu, and M. Tanaka, “A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress,” Science, vol. 336, no. 6079, pp. 355–359, 2012.
[43]
R. B. Wickner, H. K. Edskes, D. Kryndushkin, R. McGlinchey, D. Bateman, and A. Kelly, “Prion diseases of yeast: amyloid structure and biology,” Seminars in Cell and Developmental Biology, vol. 22, no. 5, pp. 469–475, 2011.
[44]
D. M. Fowler, A. V. Koulov, W. E. Balch, and J. W. Kelly, “Functional amyloid—from bacteria to humans,” Trends in Biochemical Sciences, vol. 32, no. 5, pp. 217–224, 2007.
[45]
A. D. Steele, S. Lindquist, and A. Aguzzi, “The prion protein knockout mouse: a phenotype under challenge,” Prion, vol. 1, no. 2, pp. 83–93, 2007.
[46]
M. Jucker and L. C. Walker, “Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders,” Annals of Neurology, vol. 70, no. 4, pp. 532–540, 2011.
[47]
J. Stohr, J. C. Watts, Z. L. Mensinger, et al., “Purified and synthetic Alzheimer's amyloid beta (Aβ) prions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 27, pp. 11025–11030, 2012.
[48]
J.-Y. Li, E. Englund, J. L. Holton et al., “Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation,” Nature Medicine, vol. 14, no. 5, pp. 501–503, 2008.
[49]
K. C. Luk, V. Kehm, J. Carroll, et al., “Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice,” Science, vol. 338, no. 6109, pp. 949–953, 2012.
[50]
A. J. Yang, D. Chandswangbhuvana, T. Shu, A. Henschen, and C. G. Glabe, “Intracellular accumulation of insoluble, newly synthesized Aβn-42 in amyloid precursor protein-transfected cells that have been treated with Aβ1- 42,” Journal of Biological Chemistry, vol. 274, no. 29, pp. 20650–20656, 1999.
[51]
S. Brandner, S. Isenmann, A. Raeber et al., “Normal host prion protein necessary for scrapie-induced neurotoxicity,” Nature, vol. 379, no. 6563, pp. 339–343, 1996.
[52]
G. Mallucci, A. Dickinson, J. Linehan, P.-C. Kl?hn, S. Brandner, and J. Collinge, “Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis,” Science, vol. 302, no. 5646, pp. 871–874, 2003.
[53]
L. Saavedra, A. Mohamed, V. Ma, S. Kar, and E. P. De Chaves, “Internalization of β-amyloid peptide by primary neurons in the absence of apolipoprotein E,” Journal of Biological Chemistry, vol. 282, no. 49, pp. 35722–35732, 2007.
[54]
S. Nath, L. Agholme, F. R. Kurudenkandy, B. Granseth, J. Marcusson, and M. Hallbeck, “Spreading of neurodegenerative pathology via neuron-to-neuron transmission of β-amyloid,” The Journal of Neuroscience, vol. 32, no. 26, pp. 8767–8777, 2012.
[55]
L. Rajendran, M. Honsho, T. R. Zahn et al., “Alzheimer's disease β-amyloid peptides are released in association with exosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 30, pp. 11172–11177, 2006.
[56]
D. Tampellini, N. Rahman, M. T. Lin, E. Capetillo-Zarate, and G. K. Gouras, “Impaired β-amyloid secretion in Alzheimer's disease pathogenesis,” The Journal of Neuroscience, vol. 31, no. 43, pp. 15384–15390, 2011.
[57]
D. J. Irwin, J. Y. Abrams, L. B. Schonberger, et al., “Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone,” JAMA Neurology, vol. 70, no. 4, pp. 462–468, 2013.