全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Mitochondrial Disulfide Relay System: Roles in Oxidative Protein Folding and Beyond

DOI: 10.1155/2013/742923

Full-Text   Cite this paper   Add to My Lib

Abstract:

Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS). The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration. 1. Introduction Because almost all proteins in eukaryotic cells are synthesized by cytosolic ribosomes, protein translocation across membranes is critical for organelle biogenesis. The invention of organelle-specific targeting systems in the cytosol was instrumental to facilitate correct translocation events and to avoid mistargeting. These pathways are usually complemented by machineries in the organelle lumen which provide driving force and ensure directionality. For example, in the endoplasmic reticulum (ER) and the mitochondrial matrix members of the Hsp70 family of chaperones bind incoming substrates and thereby prevent their backsliding (ratchet-like mechanism) [1]. A similar mechanism is employed for protein import into the mitochondrial intermembrane space (IMS). Here formation of inter- and intramolecular disulfide bonds by the essential mitochondrial disulfide relay is critical for translocation across the mitochondrial outer membrane [2–6]. In this review, we will discuss the disulfide relay and its components, compare and contrast the machineries in yeast and human cells, and discuss additional potentially nonoxidative functions of disulfide relay components in human cells. 2. Substrates of the Mitochondrial Disulfide Relay Most proteins that are imported into mitochondria contain either a mitochondrial targeting signal (MTS) or internal targeting sequences [4, 7, 8]. They are thereby targeted into the mitochondrial matrix or to the two mitochondrial membranes. In contrast, only few of the precursors of IMS proteins carry the so-called bipartite presequences consisting of an MTS and a hydrophobic sorting

References

[1]  D. Tomkiewicz, N. Nouwen, and A. J. M. Driessen, “Pushing, pulling and trapping—modes of motor protein supported protein translocation,” The FEBS Letters, vol. 581, no. 15, pp. 2820–2828, 2007.
[2]  N. Mesecke, N. Terziyska, C. Kozany et al., “A disulfide relay system in the intermembrane space of mitochondria that mediates protein import,” Cell, vol. 121, no. 7, pp. 1059–1069, 2005.
[3]  J. Riemer, N. Bulleid, and J. M. Herrmann, “Disulfide formation in the ER and mitochondria: two solutions to a common process,” Science, vol. 324, no. 5932, pp. 1284–1287, 2009.
[4]  A. Chacinska, C. M. Koehler, D. Milenkovic, T. Lithgow, and N. Pfanner, “Importing mitochondrial proteins: machineries and mechanisms,” Cell, vol. 138, no. 4, pp. 628–644, 2009.
[5]  A. Chatzi and K. Tokatlidis, “The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis,” Antioxidants & Redox Signaling, vol. 19, no. 1, pp. 54–62, 2013.
[6]  T. Endo, K. Yamano, and S. Kawano, “Structural insight into the mitochondrial protein import system,” Biochimica et Biophysica Acta, vol. 1808, no. 3, pp. 955–970, 2011.
[7]  W. Neupert and J. M. Herrmann, “Translocation of proteins into mitochondria,” Annual Review of Biochemistry, vol. 76, pp. 723–749, 2007.
[8]  J. M. Herrmann and J. Riemer, “The intermembrane space of mitochondria,” Antioxidants and Redox Signaling, vol. 13, no. 9, pp. 1341–1358, 2010.
[9]  J. M. Herrmann, S. Longen, D. Weckbecker, and M. Depuydt, “Biogenesis of mitochondrial proteins,” Advances in Experimental Medicine and Biology, vol. 748, pp. 41–64, 2012.
[10]  J. Riemer, M. Fischer, and J. M. Herrmann, “Oxidation-driven protein import into mitochondria: insights and blind spots,” Biochimica et Biophysica Acta, vol. 1808, no. 3, pp. 981–989, 2011.
[11]  L. Banci, I. Bertini, S. Ciofi-Baffoni et al., “A structural-dynamical characterization of human Cox17,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7912–7920, 2008.
[12]  L. Banci, I. Bertinia, S. Ciofi-Baffonia, et al., “Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins,” Journal of Structural Biology, vol. 180, no. 1, pp. 190–200, 2012.
[13]  S. Longen, M. Bien, K. Bihlmaier et al., “Systematic analysis of the twin Cx9C protein family,” Journal of Molecular Biology, vol. 393, no. 2, pp. 356–368, 2009.
[14]  D. Milenkovic, T. Ramming, J. M. Müller et al., “Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria,” Molecular Biology of the Cell, vol. 20, no. 10, pp. 2530–2539, 2009.
[15]  C. T. Webb, M. A. Gorman, M. Lazarou, M. T. Ryan, and J. M. Gulbis, “Crystal structure of the mitochondrial chaperone TIM9?10 reveals a six-bladed α-propeller,” Molecular Cell, vol. 21, no. 1, pp. 123–133, 2006.
[16]  K. Gabriel, D. Milenkovic, A. Chacinska et al., “Novel mitochondrial intermembrane space proteins as substrates of the MIA import pathway,” Journal of Molecular Biology, vol. 365, no. 3, pp. 612–620, 2007.
[17]  D. Horn, W. Zhou, E. Trevisson et al., “The conserved mitochondrial twin Cx9C Protein Cmc2 is a Cmc1 homologue essential for cytochrome c oxidase biogenesis,” Journal of Biological Chemistry, vol. 285, no. 20, pp. 15088–15099, 2010.
[18]  C. Oswald, U. Krause-Buchholz, and G. R?del, “Knockdown of human COX17 affects assembly and supramolecular organization of cytochrome c oxidase,” Journal of Molecular Biology, vol. 389, no. 3, pp. 470–479, 2009.
[19]  K. Rigby, L. Zhang, P. A. Cobine, G. N. George, and D. R. Winge, “Characterization of the cytochrome c oxidase assembly factor Cox19 of Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 282, no. 14, pp. 10233–10242, 2007.
[20]  D. Milenkovic, K. Gabriel, B. Guiard, A. Schulze-Specking, N. Pfanner, and A. Chacinska, “Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22472–22480, 2007.
[21]  S. Vial, H. Lu, S. Allen et al., “Assembly of TIM9 and TIM10 into a functional chaperone,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 36100–36108, 2002.
[22]  S. A. Paschen, U. Rothbauer, K. Káldi, M. F. Bauer, W. Neupert, and M. Brunner, “The role of the TIM8-13 complex in the import of Tim23 into mitochondria,” The EMBO Journal, vol. 19, no. 23, pp. 6392–6400, 2000.
[23]  M. Fischer, S. Horn, A. Belkacemi, et al., “Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells,” Molecular Biology of the Cell, vol. 24, no. 14, pp. 2160–2170, 2013.
[24]  G. Cavallaro, “Genome-wide analysis of eukaryotic twin CX9C proteins,” Molecular BioSystems, vol. 6, no. 12, pp. 2459–2470, 2010.
[25]  A. Varabyova, U. Topf, P. Kwiatkowska, L. Wrobel, M. Kaus-Drobek, and A. Chacinska, “Mia40 and MINOS act in parallel with Ccs1 in the biogenesis of mitochondrial Sod1,” The FEBS Journal, vol. 280, no. 20, pp. 4943–4959, 2013.
[26]  C. Kl?ppela, Y. Suzuki, K. Kojer et al., “Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol,” Molecular Biology of the Cell, vol. 22, no. 20, pp. 3749–3757, 2011.
[27]  D. P. Gro?, C. A. Burgard, S. Reddehase, J. M. Leitch, V. C. Culotta, and K. Hell, “Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system,” Molecular Biology of the Cell, vol. 22, no. 20, pp. 3758–3767, 2011.
[28]  E. Kallergi, M. Andreadaki, P. Kritsiligkou et al., “Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space,” ACS Chemical Biology, vol. 7, no. 4, pp. 707–714, 2012.
[29]  D. Weckbecker, S. Longen, J. Riemer, and J. M. Herrmann, “Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria,” The EMBO Journal, vol. 31, no. 22, pp. 4348–4358, 2012.
[30]  L. Wrobel, A. Trojanowska, M. E. Sztolsztener, and A. Chacinska, “Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria,” Molecular Biology of the Cell, vol. 24, no. 5, pp. 543–554, 2013.
[31]  F. N. Vogtle, J. M. Burkhart, S. Rao, et al., “Intermembrane space proteome of yeast mitochondria,” Molecular & Cellular Proteomics, vol. 11, no. 12, pp. 1840–1852, 2012.
[32]  S. Ghaemmaghami, W. Huh, K. Bower et al., “Global analysis of protein expression in yeast,” Nature, vol. 425, no. 6959, pp. 737–741, 2003.
[33]  L. Banci, L. Barbieri, E. Luchinat, and E. Secci, “Visualization of redox-controlled protein fold in living cells,” Chemistry & Biology, vol. 20, no. 6, pp. 747–752, 2013.
[34]  R. Durigon, Q. Wang, E. Ceh Pavia, C. M. Grant, and H. Lu, “Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins,” EMBO Reports, vol. 13, no. 10, pp. 916–922, 2012.
[35]  B. Morgan and H. Lu, “Oxidative folding competes with mitochondrial import of the small Tim proteins,” Biochemical Journal, vol. 411, no. 1, pp. 115–122, 2008.
[36]  B. Morgan, S. Kim, G. Yan, and H. Lu, “Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small tim proteins,” Journal of Biological Chemistry, vol. 284, no. 11, pp. 6818–6825, 2009.
[37]  P. Bragoszewski, A. Gornicka, M. E. Sztolsztener, and A. Chacinska, “The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins,” Molecular and Cellular Biology, vol. 33, no. 11, pp. 2136–2148, 2013.
[38]  D. P. Sideris, N. Petrakis, N. Katrakili et al., “A novel intermembrane space-targeting signal docks cysteines onto Mia40 during mitochondrial oxidative folding,” Journal of Cell Biology, vol. 187, no. 7, pp. 1007–1022, 2009.
[39]  M. Bien, S. Longen, N. Wagener, I. Chwalla, J. M. Herrmann, and J. Riemer, “Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione,” Molecular Cell, vol. 37, no. 4, pp. 516–528, 2010.
[40]  L. Banci, I. Bertini, C. Cefaro et al., “MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria,” Nature Structural and Molecular Biology, vol. 16, no. 2, pp. 198–206, 2009.
[41]  S. Kawano, K. Yamano, M. Naoé et al., “Structural basis of yeast Tim40/Mia40 as an oxidative translocator in the mitochondrial intermembrane space,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14403–14407, 2009.
[42]  S. Hofmann, U. Rothbauer, N. Mühlenbein, K. Baiker, K. Hell, and M. F. Bauer, “Functional and mutational characterization of human MIA40 acting during import into the mitochondrial intermembrane space,” Journal of Molecular Biology, vol. 353, no. 3, pp. 517–528, 2005.
[43]  J. Yang, O. Staples, L. W. Thomas et al., “Human CHCHD4 mitochondrial proteins regulate cellular oxygen consumption rate and metabolism and provide a critical role in hypoxia signaling and tumor progression,” Journal of Clinical Investigation, vol. 122, no. 2, pp. 600–611, 2012.
[44]  M. E. Sztolsztener, A. Brewinska, B. Guiard, and A. Chacinska, “Disulfide bond formation: sulfhydryl oxidase ALR controls mitochondrial biogenesis of human MIA40,” Traffic, vol. 14, no. 3, pp. 309–320, 2013.
[45]  A. Chatzi, D. P. Sideris, N. Katrakili, C. Pozidis, and K. Tokatlidis, “Biogenesis of yeast Mia40-uncoupling folding from import and atypical recognition features,” The FEBS Journal, vol. 280, no. 20, pp. 4960–4969, 2013.
[46]  K. von der Malsburg, J. M. Müller, M. Bohnert et al., “Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis,” Developmental Cell, vol. 21, no. 4, pp. 694–707, 2011.
[47]  M. Bohnert, L.-S. Wenz, R. M. Zerbes, et al., “Role of mitochondrial inner membrane organizing system in protein biogenesis of the mitochondrial outer membrane,” Molecular Biology of the Cell, vol. 23, no. 20, pp. 3948–3956, 2012.
[48]  R. M. Zerbes, M. Bohnert, D. A. Stroud, et al., “Role of MINOS in mitochondrial membrane architecture: cristae morphology and outer membrane interactions differentially depend on mitofilin domains,” Journal of Molecular Biology, vol. 422, no. 2, pp. 183–191, 2012.
[49]  M. Harner, C. K?rner, D. Walther et al., “The mitochondrial contact site complex, a determinant of mitochondrial architecture,” The EMBO Journal, vol. 30, no. 21, pp. 4356–4370, 2011.
[50]  S. Hoppins, S. R. Collins, A. Cassidy-Stone et al., “A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria,” Journal of Cell Biology, vol. 195, no. 2, pp. 323–340, 2011.
[51]  L. Banci, I. Bertini, C. Cefaro et al., “Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 47, pp. 20190–20195, 2010.
[52]  L. Bottinger, A. Gornicka, T. Czerwik, et al., “In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins,” Molecular Biology of the Cell, vol. 23, no. 20, pp. 3957–3969, 2012.
[53]  D. Stojanovski, D. Milenkovic, J. M. Müller et al., “Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase,” Journal of Cell Biology, vol. 183, no. 2, pp. 195–202, 2008.
[54]  C. K. Wu, T. A. Dailey, H. A. Dailey, B. Wang, and J. P. Rose, “The crystal structure of augmenter of liver regeneration: a mammalian FAD-dependent sulfhydryl oxidase,” Protein Science, vol. 12, no. 5, pp. 1109–1118, 2003.
[55]  V. N. Daithankar, S. R. Farrell, and C. Thorpe, “Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space,” Biochemistry, vol. 48, no. 22, pp. 4828–4837, 2009.
[56]  L. Banci, I. Bertini, V. Calderone et al., “Molecular recognition and substrate mimicry drive the electron-transfer process between MIA40 and ALR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 12, pp. 4811–4816, 2011.
[57]  L. Banci, I. Bertini, V. Calderone et al., “An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR,” Journal of the American Chemical Society, vol. 134, no. 3, pp. 1442–1445, 2012.
[58]  S. R. Farrell and C. Thorpe, “Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity,” Biochemistry, vol. 44, no. 5, pp. 1532–1541, 2005.
[59]  V. N. Daithankar, S. A. Schaefer, M. Dong, B. J. Bahnson, and C. Thorpe, “Structure of the human sulfhydryl oxidase augmenter of liver regeneration and characterization of a human mutation causing an autosomal recessive myopathy,” Biochemistry, vol. 49, no. 31, pp. 6737–6745, 2010.
[60]  E. Vitu, M. Bentzur, T. Lisowsky, C. A. Kaiser, and D. Fass, “Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide,” Journal of Molecular Biology, vol. 362, no. 1, pp. 89–101, 2006.
[61]  S. K. Ang and H. Lu, “Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p,” Journal of Biological Chemistry, vol. 284, no. 42, pp. 28754–28761, 2009.
[62]  K. Bihlmaier, N. Mesecke, N. Terziyska, M. Bien, K. Hell, and J. M. Herrmann, “The disulfide relay system of mitochondria is connected to the respiratory chain,” Journal of Cell Biology, vol. 179, no. 3, pp. 389–395, 2007.
[63]  C. W. Kay, C. Els?sser, R. Bittl, S. R. Farrell, and C. Thorpe, “Determination of the distance between the two neutral flavin radicals in augmenter of liver regeneration by pulsed ELDOR,” Journal of the American Chemical Society, vol. 128, no. 1, pp. 76–77, 2006.
[64]  S. Allen, V. Balabanidou, D. P. Sideris, T. Lisowsky, and K. Tokatlidis, “Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c,” Journal of Molecular Biology, vol. 353, no. 5, pp. 937–944, 2005.
[65]  H. L. Tienson, D. V. Dabir, S. E. Neal et al., “Reconstitution of the Mia40-Erv1 oxidative folding pathway for the small tim proteins,” Molecular Biology of the Cell, vol. 20, no. 15, pp. 3481–3490, 2009.
[66]  D. V. Dabir, E. P. Leverich, S. Kim et al., “A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1,” The EMBO Journal, vol. 26, no. 23, pp. 4801–4811, 2007.
[67]  N. Mesecke, K. Bihlmaier, B. Grumbt et al., “The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40,” EMBO Reports, vol. 9, no. 11, pp. 1107–1113, 2008.
[68]  S. P. Curran, D. Leuenberger, E. P. Leverich, D. K. Hwang, K. N. Beverly, and C. M. Koehler, “The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway,” Journal of Biological Chemistry, vol. 279, no. 42, pp. 43744–43751, 2004.
[69]  K. Kojer, M. Bien, H. Gangel, B. Morgan, T. Dick, and J. Riemer, “Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state,” The EMBO Journal, vol. 31, no. 14, pp. 3169–3182, 2012.
[70]  J. Hu, L. Dong, and C. E. Outten, “The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29126–29134, 2008.
[71]  H. Lu and J. Woodburn, “Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically,” Journal of Molecular Biology, vol. 353, no. 4, pp. 897–910, 2005.
[72]  L. Banci, I. Bertini, S. Ciofi-Baffoni, T. Hadjiloi, M. Martinelli, and P. Palumaa, “Mitochondrial copper(I) transfer from Cox17 to Sco1 is coupled to electron transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 19, pp. 6803–6808, 2008.
[73]  A. Voronova, W. Meyer-Klaucke, T. Meyer et al., “Oxidative switches in functioning of mammalian copper chaperone Cox17,” Biochemical Journal, vol. 408, no. 1, pp. 139–148, 2007.
[74]  E. Napoli, S. Wong, C. Hung, et al., “Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington's disease,” Human Molecular Genetics, vol. 22, no. 5, pp. 989–1004, 2013.
[75]  L. R. Todd, R. Gomathinayagam, and U. Sankar, “A novel Gfer-Drp1 link in preserving mitochondrial dynamics and function in pluripotent stem cells,” Autophagy, vol. 6, no. 6, pp. 821–822, 2010.
[76]  L. R. Todd, M. N. Damin, R. Gomathinayagam, S. R. Horn, A. R. Means, and U. Sankar, “Growth factor ero1-like modulates Drp1 to preserve mitochondrial dynamics and function in mouse embryonic stem cells,” Molecular Biology of the Cell, vol. 21, no. 7, pp. 1225–1236, 2010.
[77]  D. C. Wilkerson and U. Sankar, “Mitochondria: a sulfhydryl oxidase and fission GTPase connect mitochondrial dynamics with pluripotency in embryonic stem cells,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 9, pp. 1252–1256, 2011.
[78]  Y. Li, M. Farooq, D. Sheng et al., “Augmenter of liver regeneration (alr) promotes liver outgrowth during zebrafish hepatogenesis,” PLoS ONE, vol. 7, no. 1, Article ID e30835, 2012.
[79]  D. V. Dabir, S. A. Hasson, K. Setoguchi, et al., “A small molecule inhibitor of redox-regulated protein translocation into mitochondria,” Developmental Cell, vol. 25, no. 1, pp. 81–92, 2013.
[80]  X. M. Yang, Z. Hu, L. Xie, Z. Wu, and F. He, “In vitro stimulation of HTC hepatoma cell growth by recombinant human augmenter of liver regeneration (ALR),” Acta Physiologica Sinica, vol. 49, no. 5, pp. 557–561, 1997.
[81]  G. Wang, X. Yang, Y. Zhang et al., “Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1,” Journal of Biological Chemistry, vol. 274, no. 17, pp. 11469–11472, 1999.
[82]  Y. Li, M. Li, G. Xing et al., “Stimulation of the mitogen-activated protein kinase cascade tyrosine phosphorylation of the epidermal growth factor receptor by hepatopoietin,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37443–37447, 2000.
[83]  M. Ivan, K. Kondo, H. Yang et al., “HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing,” Science, vol. 292, no. 5516, pp. 464–468, 2001.
[84]  P. Jaakkola, D. R. Mole, Y.-M. Tian et al., “Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation,” Science, vol. 292, no. 5516, pp. 468–472, 2001.
[85]  P. H. Maxwell, M. S. Wlesener, G. Chang et al., “The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis,” Nature, vol. 399, no. 6733, pp. 271–275, 1999.
[86]  Y. Pan, K. D. Mansfield, C. C. Bertozzi et al., “Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro,” Molecular and Cellular Biology, vol. 27, no. 3, pp. 912–925, 2007.
[87]  N. S. Chandel, D. S. McClintock, C. E. Feliciano et al., “Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing,” Journal of Biological Chemistry, vol. 275, no. 33, pp. 25130–25138, 2000.
[88]  J. Myllyharju and K. I. Kivirikko, “Characterization of the iron- and 2-oxoglutavate binding sites of human prolyl 4-hydroxylase,” The EMBO Journal, vol. 16, no. 6, pp. 1173–1180, 1997.
[89]  M. Callapina, J. Zhou, S. Schnitzer et al., “Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1α accumulation-implications for prolyl hydroxylase activity and iron,” Experimental Cell Research, vol. 306, no. 1, pp. 274–284, 2005.
[90]  S. C. Flagg, C. B. Martin, C. Y. Taabazuing, B. E. Holmes, and M. J. Knapp, “Screening chelating inhibitors of HIF-prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH),” Journal of Inorganic Biochemistry, vol. 113, pp. 25–30, 2012.
[91]  A. Di Fonzo, D. Ronchi, T. Lodi et al., “The mitochondrial disulfide relay system protein GFER is mutated in autosomal-recessive myopathy with cataract and combined respiratory-chain deficiency,” American Journal of Human Genetics, vol. 84, no. 5, pp. 594–604, 2009.
[92]  H. Lange, T. Lisowsky, J. Gerber, U. Mühlenhoff, G. Kispal, and R. Lill, “An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins,” EMBO Reports, vol. 2, no. 8, pp. 715–720, 2001.
[93]  Y. Li, K. Wei, C. Lu et al., “Identification of hepatopoietin dimerization, its interacting regions and alternative splicing of its transcription,” European Journal of Biochemistry, vol. 269, no. 16, pp. 3888–3893, 2002.
[94]  J. Lu, W. Xu, Y. Zhan et al., “Identification and characterization of a novel isoform of hepatopoietin,” World Journal of Gastroenterology, vol. 8, no. 2, pp. 353–356, 2002.
[95]  C. F. Gao, F. G. Zhou, H. Wang, Y.-F. Huang, Q. Ji, and J. Chen, “Genetic recombinant expression and characterization of human augmenter of liver regeneration,” Digestive Diseases and Sciences, vol. 54, no. 3, pp. 530–537, 2009.
[96]  M. Ilowski, A. Kleespies, E. N. de Toni et al., “Augmenter of liver regeneration (ALR) protects human hepatocytes against apoptosis,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 148–152, 2011.
[97]  C. R. Gandhi, “Augmenter of liver regeneration,” Fibrogenesis Tissue Repair, vol. 5, no. 1, p. 10, 2012.
[98]  C. Lu, Y. Li, Y. Zhao et al., “Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway,” The FASEB Journal, vol. 16, no. 1, pp. 90–92, 2002.
[99]  Y. Wang, C. Lu, H. Wei et al., “Hepatopoietin interacts directly with COP9 signalosome and regulates AP-1 activity,” FEBS Letters, vol. 572, no. 1–3, pp. 85–91, 2004.
[100]  X. Chen, Y. Li, K. Wei et al., “The potentiation role of hepatopoietin on activator protein-1 is dependent on its sulfhydryl oxidase activity,” The Journal of Biological Chemistry, vol. 278, no. 49, pp. 49022–49030, 2003.
[101]  E. C. Teng, L. R. Todd, T. J. Ribar et al., “Gfer inhibits Jab1-mediated degradation of p27kip1 to restrict proliferation of hematopoietic stem cells,” Molecular Biology of the Cell, vol. 22, no. 8, pp. 1312–1320, 2011.
[102]  U. Sankar and A. R. Means, “Gfer is a critical regulator of HSC proliferation,” Cell Cycle, vol. 10, no. 14, pp. 2263–2268, 2011.
[103]  A. Francavilla, N. L. Vujanovic, L. Polimeno et al., “The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions,” Hepatology, vol. 25, no. 2, pp. 411–415, 1997.
[104]  L. Polimeno, M. Margiotta, L. Marangi et al., “Molecular mechanisms of augmenter of liver regeneration as immunoregulator: its effect on interferon-γ expression in rat liver,” Digestive and Liver Disease, vol. 32, no. 3, pp. 217–225, 2000.
[105]  L. Polimeno, B. Pesetti, E. Annoscia et al., “Alrp, a survival factor that controls the apoptotic process of regenerating liver after partial hepatectomy in rats,” Free Radical Research, vol. 45, no. 5, pp. 534–549, 2011.
[106]  N. Wang, H. Sun, Y. Shen, et al., “Augmenter of liver regeneration inhibits apoptosis of activated human peripheral blood lymphocytes in vitro,” Immunopharmacology and Immunotoxicology, vol. 35, no. 2, pp. 257–263, 2013.
[107]  R. Dayoub, A. Vogel, J. Schuett, et al., “Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration,” Molecular Medicine, vol. 19, no. 1, pp. 237–244, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133