全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of Protein Misfolding and Proteostasis Deficiency in Protein Misfolding Diseases and Aging

DOI: 10.1155/2013/638083

Full-Text   Cite this paper   Add to My Lib

Abstract:

The misfolding, aggregation, and tissue accumulation of proteins are common events in diverse chronic diseases, known as protein misfolding disorders. Many of these diseases are associated with aging, but the mechanism for this connection is unknown. Recent evidence has shown that the formation and accumulation of protein aggregates may be a process frequently occurring during normal aging, but it is unknown whether protein misfolding is a cause or a consequence of aging. To combat the formation of these misfolded aggregates cells have developed complex and complementary pathways aiming to maintain protein homeostasis. These protective pathways include the unfolded protein response, the ubiquitin proteasome system, autophagy, and the encapsulation of damaged proteins in aggresomes. In this paper we review the current knowledge on the role of protein misfolding in disease and aging as well as the implication of deficiencies in the proteostasis cellular pathways in these processes. It is likely that further understanding of the mechanisms involved in protein misfolding and the natural defense pathways may lead to novel strategies for treatment of age-dependent protein misfolding disorders and perhaps aging itself. 1. Introduction Multiple and complex biological processes occur simultaneously in living cells. These processes must be strictly regulated in order to allow an optimal equilibrium and function. Proteins are key macromolecules, which perform a vast array of functions within living organisms, including replicating genetic material, catalyzing metabolic reactions, maintaining the cellular structure, participating in cellular signaling, immune responses, cell adhesion, cell cycle, responding to stimuli, and transporting molecules from one location to another. Life depends on the proper function of thousands of proteins, which in turn depends upon the acquisition of the correct, biologically functional folding of the protein. The cellular processes responsible for the synthesis, folding, and turnover of proteins are known as protein homeostasis or proteostasis [1]. The proteostasis network controls protein concentration, subcellular location, folding through molecular chaperone systems and folding enzymes, protein degradation mediated by the proteasome, lysosome, and autophagy, among others. Defects of proteostasis may commonly lead to aberrant folding, aggregation, and accumulation of proteins resulting in cellular damage and tissue dysfunction. 2. Protein Misfolding in Disease Currently there are at least 30 different human diseases reported to be

References

[1]  W. E. Balch, R. I. Morimoto, A. Dillin, and J. W. Kelly, “Adapting proteostasis for disease intervention,” Science, vol. 319, no. 5865, pp. 916–919, 2008.
[2]  F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annual Review of Biochemistry, vol. 75, pp. 333–366, 2006.
[3]  I. Moreno-Gonzalez and C. Soto, “Misfolded protein aggregates: mechanisms, structures and potential for disease transmission,” Seminars in Cell and Developmental Biology, vol. 22, no. 5, pp. 482–487, 2011.
[4]  C. Soto, “Unfolding the role of protein misfolding in neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 4, no. 1, pp. 49–60, 2003.
[5]  J. Hardy and K. Gwinn-Hardy, “Genetic classification of primary neurodegenerative disease,” Science, vol. 282, no. 5391, pp. 1075–1079, 1998.
[6]  I. Moreno-Gonzalez and C. Soto, “Natural animal models of neurodegenerative protein misfolding diseases,” Current Pharmaceutical Design, vol. 18, no. 8, pp. 1148–1158, 2012.
[7]  A. Demuro, E. Mina, R. Kayed, S. C. Milton, I. Parker, and C. G. Glabe, “Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 17294–17300, 2005.
[8]  S. M. Johnson, S. Connelly, C. Fearns, E. T. Powers, and J. W. Kelly, “The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug,” Journal of Molecular Biology, vol. 421, no. 2-3, pp. 185–203, 2012.
[9]  E. A. Kikis, T. Gidalevitz, and R. I. Morimoto, “Protein homeostasis in models of aging and age-related conformational disease,” Advances in Experimental Medicine and Biology, vol. 694, pp. 138–159, 2010.
[10]  D. C. David, N. Ollikainen, J. C. Trinidad, M. P. Cary, A. L. Burlingame, and C. Kenyon, “Widespread protein aggregation as an inherent part of aging in C. elegans,” PLoS Biology, vol. 8, no. 8, Article ID e1000450, 2010.
[11]  P. Reis-Rodrigues, G. Czerwieniec, T. W. Peters et al., “Proteomic analysis of age-dependent changes in protein solubility identifies genes that modulate lifespan,” Aging Cell, vol. 11, no. 1, pp. 120–127, 2012.
[12]  T. W. Peters, M. J. Rardin, G. Czerwieniec, et al., “Tor1 regulates protein solubility in Saccharomyces cerevisiae,” Molecular Biology of the Cell, vol. 23, no. 24, pp. 4679–4688, 2012.
[13]  S. Alavez, M. C. Vantipalli, D. J. S. Zucker, I. M. Klang, and G. J. Lithgow, “Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan,” Nature, vol. 472, no. 7342, pp. 226–229, 2011.
[14]  S. Alavez and G. J. Lithgow, “Pharmacological maintenance of protein homeostasis could postpone age-related disease,” Aging Cell, vol. 11, no. 2, pp. 187–191, 2012.
[15]  A. Tonoki, E. Kuranaga, T. Tomioka et al., “Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process,” Molecular and Cellular Biology, vol. 29, no. 4, pp. 1095–1106, 2009.
[16]  D. Vilchez, I. Morantte, Z. Liu, et al., “RPN-6 determines C. elegans longevity under proteotoxic stress conditions,” Nature, vol. 489, no. 7415, pp. 263–268, 2012.
[17]  S. Robida-Stubbs, K. Glover-Cutter, D. W. Lamming et al., “TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO,” Cell Metabolism, vol. 15, no. 5, pp. 713–724, 2012.
[18]  D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009.
[19]  M. Schr?der and R. J. Kaufman, “ER stress and the unfolded protein response,” Mutation Research, vol. 569, no. 1-2, pp. 29–63, 2005.
[20]  M. K. Brown and N. Naidoo, “The endoplasmic reticulum stress response in aging and age-related diseases,” Frontiers in Physiology, vol. 3, article 263, 2012.
[21]  H. Urra, E. Dufey, F. Lisbona, D. Rojas-Rivera, and C. Hetz, “When ER stress reaches a dead end,” Biochimica et Biophysica Acta, 2013.
[22]  C. Hetz, “The biological meaning of the UPR,” Nature Reviews Molecular Cell Biology, vol. 14, no. 7, p. 404, 2013.
[23]  C. A. Hetz and C. Soto, “Emerging roles of the unfolded protein response signaling in physiology and disease,” Current Molecular Medicine, vol. 6, no. 1, p. 1, 2006.
[24]  E. Colla, P. Coune, Y. Liu et al., “Endoplasmic reticulum stress is important for the manifestations of α-synucleinopathy in vivo,” The Journal of Neuroscience, vol. 32, no. 10, pp. 3306–3320, 2012.
[25]  H. Kikuchi, G. Almer, S. Yamashita et al., “Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 6025–6030, 2006.
[26]  M. Nunziante, K. Ackermann, K. Dietrich et al., “Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein,” The Journal of Biological Chemistry, vol. 286, no. 39, pp. 33942–33953, 2011.
[27]  C. Hetz, M. Russelakis-Carneiro, S. W?lchli et al., “The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity,” The Journal of Neuroscience, vol. 25, no. 11, pp. 2793–2802, 2005.
[28]  Y. Kouroku, E. Fujita, A. Jimbo et al., “Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation,” Human Molecular Genetics, vol. 11, no. 13, pp. 1505–1515, 2002.
[29]  T. Nakagawa, H. Zhu, N. Morishima et al., “Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β,” Nature, vol. 403, no. 6765, pp. 98–103, 2000.
[30]  Y. K. Oh, K. S. Shin, J. Yuan, and S. J. Kang, “Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells,” Journal of Neurochemistry, vol. 104, no. 4, pp. 993–1005, 2008.
[31]  D. Y. Lee, K. Lee, H. J. Lee et al., “Activation of PERK signaling attenuates Abeta-mediated ER stress,” PloS ONE, vol. 5, no. 5, Article ID e10489, 2010.
[32]  S. Casas-Tinto, Y. Zhang, J. Sanchez-Garcia, M. Gomez-Velazquez, D. E. Rincon-Limas, and P. Fernandez-Funez, “The ER stress factor XBP1s prevents amyloid-β neurotoxicity,” Human Molecular Genetics, vol. 20, no. 11, pp. 2144–2160, 2011.
[33]  L. Wang, B. Popko, and R. P. Roos, “The unfolded protein response in familial amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 20, no. 5, pp. 1008–1015, 2011.
[34]  J. A. Moreno, H. Radford, D. Peretti, et al., “Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration,” Nature, vol. 485, no. 7399, pp. 507–511, 2012.
[35]  C. Hetz, A. H. Lee, D. Gonzalez-Romero, et al., “Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 757–762, 2008.
[36]  R. L. Vidal, A. Figueroa, F. A. Court et al., “Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy,” Human Molecular Genetics, vol. 21, no. 10, pp. 2245–2262, 2012.
[37]  C. Hetz, P. Thielen, S. Matus et al., “XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy,” Genes and Development, vol. 23, no. 19, pp. 2294–2306, 2009.
[38]  G. M. Paz, J. Vela, A. Casta?o et al., “Cellular environment facilitates protein accumulation in aged rat hippocampus,” Neurobiology of Aging, vol. 27, no. 7, pp. 973–982, 2006.
[39]  N. Naidoo, M. Ferber, M. Master, Y. Zhu, and A. I. Pack, “Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling,” The Journal of Neuroscience, vol. 28, no. 26, pp. 6539–6548, 2008.
[40]  N. Naidoo, J. Zhu, Y. Zhu et al., “Endoplasmic reticulum stress in wake-active neurons progresses with aging,” Aging Cell, vol. 10, no. 4, pp. 640–649, 2011.
[41]  S. G. Hussain and K. V. A. Ramaiah, “Reduced eIF2α phosphorylation and increased proapoptotic proteins in aging,” Biochemical and Biophysical Research Communications, vol. 355, no. 2, pp. 365–370, 2007.
[42]  A. Hershko and A. Ciechanover, “The ubiquitin system for protein degradation,” Annual Review of Biochemistry, vol. 61, pp. 761–807, 1992.
[43]  N. P. Dantuma and K. Lindsten, “Stressing the ubiquitin-proteasome system,” Cardiovascular Research, vol. 85, no. 2, pp. 263–271, 2010.
[44]  N. Chondrogianni and E. S. Gonos, “Structure and function of the ubiquitin-proteasome system: modulation of components,” Progress in Molecular Biology and Translational Science, vol. 109, pp. 41–74, 2012.
[45]  F. J. A. Dennissen, N. Kholod, and F. W. van Leeuwen, “The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim?” Progress in Neurobiology, vol. 96, no. 2, pp. 190–207, 2012.
[46]  A. N. Hegde and S. C. Upadhya, “Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease,” Biochimica et Biophysica Acta, vol. 1809, no. 2, pp. 128–140, 2011.
[47]  K. S. P. McNaught, D. P. Perl, A. Brownell, and C. W. Olanow, “Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease,” Annals of Neurology, vol. 56, no. 1, pp. 149–162, 2004.
[48]  B. N. Mathur, M. D. Neely, M. Dyllick-Brenzinger, A. Tandon, and A. Y. Deutch, “Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration,” Brain Research, vol. 1168, no. 1, pp. 83–89, 2007.
[49]  S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima, “Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane,” The Journal of Biological Chemistry, vol. 286, no. 22, pp. 19630–19640, 2011.
[50]  J. W. Um, E. Im, H. J. Lee et al., “Parkin directly modulates 26S proteasome activity,” The Journal of Neuroscience, vol. 30, no. 35, pp. 11805–11814, 2010.
[51]  A. Opattova, P. Filipcik, M. Cente, and M. Novak, “Intracellular degradation of misfolded tau protein induced by geldanamycin is associated with activation of proteasome,” Journal of Alzheimer's Disease, vol. 33, no. 2, pp. 339–348, 2013.
[52]  J. Ma and S. Lindquist, “Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol,” Science, vol. 298, no. 5599, pp. 1785–1788, 2002.
[53]  R. Andre and S. J. Tabrizi, “Misfolded PrP and a novel mechanism of proteasome inhibition,” Prion, vol. 6, no. 1, pp. 32–36, 2012.
[54]  H. C. Tai, A. Serrano-Pozo, T. Hashimoto, et al., “The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system,” The American Journal of Pathology, vol. 181, no. 4, pp. 1426–1435, 2012.
[55]  L. Gregori, C. Fuchs, M. E. Figueiredo-Pereira, W. E. Van Nostrand, and D. Goldgaber, “Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro,” The Journal of Biological Chemistry, vol. 270, no. 34, pp. 19702–19708, 1995.
[56]  E. Lindersson, R. Beedholm, P. H?jrup et al., “Proteasomal inhibition by alpha-synuclein filaments and oligomers,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12924–12934, 2004.
[57]  H. Snyder, K. Mensah, C. Theisler, J. Lee, A. Matouschek, and B. Wolozin, “Aggregated and monomeric α-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function,” The Journal of Biological Chemistry, vol. 278, no. 14, pp. 11753–11759, 2003.
[58]  M. Kristiansen, P. Deriziotis, D. E. Dimcheff et al., “Disease-associated prion protein oligomers inhibit the 26S proteasome,” Molecular Cell, vol. 26, no. 2, pp. 175–188, 2007.
[59]  L. Bedford, D. Hay, A. Devoy et al., “Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and lewy-like inclusions resembling human pale bodies,” The Journal of Neuroscience, vol. 28, no. 33, pp. 8189–8198, 2008.
[60]  Y. Tashiro, M. Urushitani, H. Inoue, et al., “Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis,” The Journal of Biological Chemistry, vol. 287, no. 51, pp. 42984–42994, 2012.
[61]  D. F. Fischer, R. van Dijk, P. van Tijn et al., “Long-term proteasome dysfunction in the mouse brain by expression of aberrant ubiquitin,” Neurobiology of Aging, vol. 30, no. 6, pp. 847–863, 2009.
[62]  S. H. Jung, S. H. Jae, I. Chang, and S. Kim, “Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons,” Journals of Gerontology A, vol. 62, no. 5, pp. 490–499, 2007.
[63]  S. Tydlacka, C. Wang, X. Wang, S. Li, and X. Li, “Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons,” The Journal of Neuroscience, vol. 28, no. 49, pp. 13285–13295, 2008.
[64]  J. N. Keller, F. F. Huang, and W. R. Markesbery, “Decreased levels of proteasome activity and proteasome expression in aging spinal cord,” Neuroscience, vol. 98, no. 1, pp. 149–156, 2000.
[65]  P. L?w, “The role of ubiquitin-proteasome system in ageing,” General and Comparative Endocrinology, vol. 172, no. 1, pp. 39–43, 2011.
[66]  U. Tomaru, S. Takahashi, A. Ishizu et al., “Decreased proteasomal activity causes age-related phenotypes and promotes the development of metabolic abnormalities,” The American Journal of Pathology, vol. 180, no. 3, pp. 963–972, 2012.
[67]  K. A. Rodriguez, Y. H. Edrey, P. Osmulski, M. Gaczynska, and R. Buffenstein, “Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat,” PLoS ONE, vol. 7, no. 5, Article ID e35890, 2012.
[68]  U. T. Brunk and A. Terman, “Lipofuscin: mechanisms of age-related accumulation and influence on cell function,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 611–619, 2002.
[69]  Y. H. Edrey, M. Hanes, M. Pinto, J. Mele, and R. Buffenstein, “Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research,” ILAR Journal, vol. 52, no. 1, pp. 41–53, 2011.
[70]  A. H?hn, T. Jung, S. Grimm, B. Catalgol, D. Weber, and T. Grune, “Lipofuscin inhibits the proteasome by binding to surface motifs,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 585–591, 2011.
[71]  D. Vilchez, L. Boyer, I. Morantte, et al., “Increased proteasome activity in human embryonic stem cells is regulated by PSMD11,” Nature, vol. 489, no. 7415, pp. 304–308, 2012.
[72]  G. R. Pathare, I. Nagy, S. Bohn et al., “The proteasomal subunit Rpn6 is a molecular clamp holding the core and regulatory subcomplexes together,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 1, pp. 149–154, 2012.
[73]  K. Moreau, S. Luo, and D. C. Rubinsztein, “Cytoprotective roles for autophagy,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 206–211, 2010.
[74]  A. M. Choi, S. W. Ryter, and B. Levine, “Autophagy in human health and disease,” The New England Journal of Medicine, vol. 368, no. 7, pp. 651–662, 2013.
[75]  L. R. Lapierre, A. Meléndez, and M. Hansen, “Autophagy links lipid metabolism to longevity in C. elegans,” Autophagy, vol. 8, no. 1, pp. 144–146, 2012.
[76]  K. Jia and B. Levine, “Autophagy and longevity: lessons from C. elegans,” Advances in Experimental Medicine and Biology, vol. 694, pp. 47–60, 2010.
[77]  H. D. Xu, D. Wu, J. H. Gu, et al., “The pro-survival role of autophagy depends on bcl-2 under nutrition stress conditions,” PLoS ONE, vol. 8, no. 5, Article ID e63232, 2013.
[78]  S. Kaushik and A. M. Cuervo, “Chaperone-mediated autophagy: a unique way to enter the lysosome world,” Trends in Cell Biology, vol. 22, no. 8, pp. 407–417, 2012.
[79]  D. Mijaljica, M. Prescott, and R. J. Devenish, “Microautophagy in mammalian cells: revisiting a 40-year-old conundrum,” Autophagy, vol. 7, no. 7, pp. 673–682, 2011.
[80]  M. Zhou and R. Wang, “Small-molecule regulators of autophagy and their potential therapeutic applications,” ChemMedChem, vol. 8, no. 5, pp. 694–707, 2013.
[81]  C. He and D. J. Klionsky, “Regulation mechanisms and signaling pathways of autophagy,” Annual Review of Genetics, vol. 43, pp. 67–93, 2009.
[82]  N. Mizushima and M. Komatsu, “Autophagy: renovation of cells and tissues,” Cell, vol. 147, no. 4, pp. 728–741, 2011.
[83]  B. Ravikumar, S. Sarkar, J. E. Davies et al., “Regulation of mammalian autophagy in physiology and pathophysiology,” Physiological Reviews, vol. 90, no. 4, pp. 1383–1435, 2010.
[84]  E. Wong and A. M. Cuervo, “Autophagy gone awry in neurodegenerative diseases,” Nature Neuroscience, vol. 13, no. 7, pp. 805–811, 2010.
[85]  J. Lee, W. H. Yu, A. Kumar et al., “Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations,” Cell, vol. 141, no. 7, pp. 1146–1158, 2010.
[86]  R. A. Nixon, D. Yang, and J. Lee, “Neurodegenerative lysosomal disorders: a continuum from development to late age,” Autophagy, vol. 4, no. 5, pp. 590–599, 2008.
[87]  Z. Berger, B. Ravikumar, F. M. Menzies et al., “Rapamycin alleviates toxicity of different aggregate-prone proteins,” Human Molecular Genetics, vol. 15, no. 3, pp. 433–442, 2006.
[88]  B. Ravikumar, R. Duden, and D. C. Rubinsztein, “Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy,” Human Molecular Genetics, vol. 11, no. 9, pp. 1107–1117, 2002.
[89]  B. Ravikumar, C. Vacher, Z. Berger et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nature Genetics, vol. 36, no. 6, pp. 585–595, 2004.
[90]  S. Sarkar, J. E. Davies, Z. Huang, A. Tunnacliffe, and D. C. Rubinsztein, “Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein,” The Journal of Biological Chemistry, vol. 282, no. 8, pp. 5641–5652, 2007.
[91]  F. Pickford, E. Masliah, M. Britschgi et al., “The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice,” The Journal of Clinical Investigation, vol. 118, no. 6, pp. 2190–2199, 2008.
[92]  M. N. Sabbagh and H. A. Shill, “Latrepirdine, a potential novel treatment for Alzheimer's disease and Huntington's chorea,” Current Opinion in Investigational Drugs, vol. 11, no. 1, pp. 80–91, 2010.
[93]  M. Komatsu, S. Waguri, T. Chiba et al., “Loss of autophagy in the central nervous system causes neurodegeneration in mice,” Nature, vol. 441, no. 7095, pp. 880–884, 2006.
[94]  T. Hara, K. Nakamura, M. Matsui et al., “Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice,” Nature, vol. 441, no. 7095, pp. 885–889, 2006.
[95]  C. Liang, C. Wang, X. Peng, B. Gan, and J. Guan, “Neural-specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration,” The Journal of Biological Chemistry, vol. 285, no. 5, pp. 3499–3509, 2010.
[96]  J. Lee, H. Koga, Y. Kawaguchi et al., “HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy,” The EMBO Journal, vol. 29, no. 5, pp. 969–980, 2010.
[97]  B. Ravikumar, A. Acevedo-Arozena, S. Imarisio et al., “Dynein mutations impair autophagic clearance of aggregate-prone proteins,” Nature Genetics, vol. 37, no. 7, pp. 771–776, 2005.
[98]  M. L. Tóth, T. Sigmond, é. Borsos et al., “Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans,” Autophagy, vol. 4, no. 3, pp. 330–338, 2008.
[99]  A. Simonsen, R. C. Cumming, A. Brech, P. Isakson, D. R. Schubert, and K. D. Finley, “Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila,” Autophagy, vol. 4, no. 2, pp. 176–184, 2008.
[100]  E. J. O. 'Rourke, P. Kuballa, R. Xavier, and G. Ruvkun, “omega-6 Polyunsaturated fatty acids extend life span through the activation of autophagy,” Genes & Development, vol. 27, no. 4, pp. 429–440, 2013.
[101]  C. M. Hung, L. Garcia-Haro, C. A. Sparks, and D. A. Guertin, “mTOR-dependent cell survival mechanisms,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 12, 2012.
[102]  J. L. Crespo and M. N. Hall, “Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae,” Microbiology and Molecular Biology Reviews, vol. 66, no. 4, pp. 579–591, 2002.
[103]  S. Robida-Stubbs, K. Glover-Cutter, D. W. Lamming et al., “TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO,” Cell Metabolism, vol. 15, no. 5, pp. 713–724, 2012.
[104]  C. Rallis, S. Codlin, and J. Bahler, “TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast,” Aging Cell, vol. 12, no. 4, pp. 563–573, 2013.
[105]  Y. Fang, R. Westbrook, C. Hill, et al., “Duration of rapamycin treatment has differential effects on metabolism in mice,” Cell Metabolism, vol. 17, no. 3, pp. 456–462, 2013.
[106]  R. R. Kopito, “Aggresomes, inclusion bodies and protein aggregation,” Trends in Cell Biology, vol. 10, no. 12, pp. 524–530, 2000.
[107]  X. D. Liu, S. Ko, Y. Xu, et al., “Transient aggregation of ubiquitinated proteins is a cytosolic unfolded protein response to inflammation and endoplasmic reticulum stress,” The Journal of Biological Chemistry, vol. 287, no. 23, pp. 19687–19698, 2012.
[108]  E. S. P. Wong, J. M. M. Tan, W. Soong et al., “Autophagy-mediated clearance of aggresomes is not a universal phenomenon,” Human Molecular Genetics, vol. 17, no. 16, pp. 2570–2582, 2008.
[109]  A. Kirilyuk, M. Shimoji, J. Catania, et al., “An intrinsically disordered region of the acetyltransferase p300 with similarity to prion-like domains plays a role in aggregation,” PLoS ONE, vol. 7, no. 11, Article ID e48243, 2012.
[110]  J. A. Johnston, C. L. Ward, and R. R. Kopito, “Aggresomes: a cellular response to misfolded proteins,” Journal of Cell Biology, vol. 143, no. 7, pp. 1883–1898, 1998.
[111]  Y. Wang, A. B. Meriin, N. Zaarur et al., “Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery,” The FASEB Journal, vol. 23, no. 2, pp. 451–463, 2009.
[112]  N. Zaarur, A. B. Meriin, V. L. Gabai, and M. Y. Sherman, “Triggering aggresome formation: dissecting aggresome-targeting and aggregation signals in synphilin 1,” The Journal of Biological Chemistry, vol. 283, no. 41, pp. 27575–27584, 2008.
[113]  A. Singhvi and G. Garriga, “Asymmetric divisions, aggresomes and apoptosis,” Trends in Cell Biology, vol. 19, no. 1, pp. 1–7, 2009.
[114]  E. J. Stewart, R. Madden, G. Paul, and F. Taddei, “Aging and death in an organism that reproduces by morphologically symmetric division,” PLoS Biology, vol. 3, no. 2, article e45, 2005.
[115]  M. A. Rujano, F. Bosveld, F. A. Salomons et al., “Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes,” PLoS Biology, vol. 4, no. 12, article e417, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133