The aim of this research was to investigate the effect of tribomechanical treatments on rheological, thermophysical, and some physical properties of tapioca starch. Samples of tapioca starch were treated using laboratory equipment for tribomechanical micronization and activation (TMA equipment). Before and after the TMA treatment, analysis of the particle size and particle size distribution was carried out, in addition to scanning electron micrography in tapioca starch. Scanning electron micrography showed that tribomechanical processing of tapioca starch resulted in breaking accumulations of starch granules in the form of granules. Pasting parameters have shown that maximal viscosities of model starch suspension have been decreasing after tribomechanical treatment. On the basis of gelatinization curves, it can be concluded that there are changes in the gelatinization point after treatment, and there is decrease in enthalpy of gelatinization for model suspension. After tribomechanical treatment, changes in physical properties of starch suspensions were determined, as well as specific swelling capacity, solubility index, and turbidity of tapioca starch suspensions. 1. Introduction Starch is present in food, whether it comes as a raw material or added as ingredient in order to achieve or improve certain properties. It has significant applications in the food industry, and is used as a tool for: thickening, stabilization of colloidal systems, moisture retention, flavor binding, gelling, film formation, improvement of product quality and other. Starch isolation from natural sources (seeds, tubers and fruit crops) gets a native starch which retains the original structure and properties. Due to its capability of improving water retention, it is used to improve textural properties, and due to low energy value-in the production of low-caloric foodstuffs [1–3]. Starch is a useful polymer and a cheap, natural material, the reason being the ease with which its physicochemical properties can be altered through chemical or enzyme modification and/or physical treatment [1, 4, 5]. There is great interest in novel methods to modify the structure of starch in the crystalline regions [6]. One of novel methods to modify the structure of starch is the process of tribomechanical micronization and activation (TMA process). The process of tribomechanical micronization and activation (TMA), as well as the appropriate equipment, was patented in the year 1998 at the International Bureau of the WPO PCT Receiving Office in Geneva Switzerland, under number PCT/1B 99/00757 [7]. The
References
[1]
A. Golachowski, “Application of starch and its preparationin food industry,” Zeszyty Naukowe Akademii Rolniczej we Wroc?awiu, vol. 328, pp. 117–124, 1998 (Polish).
[2]
P. Tomasik, “Modified starches and their application,” Polish Journal of Food and Nutrition Sciences, vol. 54, no. 4, pp. 16–18, 2000 (Polish).
[3]
T. Funami, Y. Kataoka, T. Omoto, Y. Goto, I. Asai, and K. Nishinari, “Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch,” Food Hydrocolloids, vol. 19, no. 1, pp. 1–13, 2005.
[4]
L. M. Che, D. Li, L. J. Wang, X. D. Chen, and Z. H. Mao, “Micronization and hydrophobic modification of cassava starch,” International Journal of Food Properties, vol. 10, no. 3, pp. 527–536, 2007.
[5]
L. M. Che, D. Li, L. J. Wang, N. ?zkan, X. D. Chen, and Z. H. Mao, “Effect of high-pressure homogenization on the structure of cassava starch,” International Journal of Food Properties, vol. 10, no. 4, pp. 911–922, 2007.
[6]
Y. Liang, B. S. Zhang, L. S. Yang, and D. W. Gao, “Chemicalreactionativity of tapioca starch with non-cristallized granule state,” Journal of Zhengzhou Institute of Technology, vol. 25, pp. 9–13, 2004.
[7]
T. Lelas, “Vorrichtung zum Micronisieren vom Materialien und neuartige Verwendungsmoglichkeiten derartig mikronisierter Materialien,” Patent PCT/ 1B99/00757, Geneve, Switzerland, 1998.
[8]
V. Lelas, “Novel food processing technologies,” Dairy, vol. 56, pp. 311–330, 2006.
[9]
Z. Herceg, V. Lelas, and M. Skreblin, “Influence of tribomechanical micronisation on the rheological properties of whey proteins,” Food Technology and Biotechnology, vol. 40, no. 2, pp. 145–156, 2002.
[10]
Z. Herceg, V. Lelas, and G. Kre?i?, “Influence of tribomechanical micronization on the physical and functional properties of whey proteins,” International Journal of Dairy Technology, vol. 58, no. 4, pp. 225–232, 2005.
[11]
Z. Herceg, V. Batur, A. R. Jambrak, M. Badanjak, S. R. Brn?i?, and V. Lalas, “Modification of rheological, thermophysical, textural and some physical properties of corn starch by tribomechanical treatment,” Carbohydrate Polymers, vol. 80, no. 4, pp. 1072–1077, 2010.
[12]
F. E. Ortega-Ojeda and A. C. Elliason, “Gelatinisation and retrogradation behaviour of some starch mixtures,” Starch, vol. 53, pp. 520–529, 2001.
[13]
J. Babi?, D. ?ubari?, N. Nedi? Tiban, and M. Kopjar, “The effect of lactose and whey powder on the gelatinization and retrogradation of tapioca starch,” in Proceedings of the 4th International Symposium on Food Rheology and Structure (ISFRS '06), P. Fischer and E. J. Windhab, Eds., pp. 707–708, Zürich, ?vicarska, 2006.
[14]
J. Babi?, D. ?ubari?, ?. A?kar, V. Pili?ota, M. Kopjar, and N. Nedi? Tiban, “Effect of pectin and carrageenan on thermophysical and rheological properties of tapioca starch,” Czech Journal of Food Sciences, vol. 24, no. 6, pp. 275–282, 2006.
[15]
D. ?ubari?, J. Babi?, ?. A?kar, et al., “Effect of galactomannan hydrocolloids on gelatinization and retrogradation of tapioca and corn starch,” Croatian Journal of Food Science and Technology, vol. 3, no. 1, pp. 26–31, 2011.
[16]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light By Small Particles, Wiley, New York, NY, USA, 1983.
[17]
H. W. Leach, L. D. McCowen, and T. J. Schoch, “Structure of the starch granule. Swelling and solubility patterns of various starches,” Cereal Chemistry, vol. 36, pp. 534–544, 1959.
[18]
C. Perera and R. Hoover, “Influence of hydroxypropylation on retrogradation properties of native, defatted and heat-moisture treated potato starches,” Food Chemistry, vol. 64, no. 3, pp. 361–375, 1999.
[19]
A. Hagenimana and X. Ding, “A comparative study on pasting and hydration properties of native rice starches and their mixtures,” Cereal Chemistry, vol. 82, no. 1, pp. 70–76, 2005.
[20]
B. Vidi?, T. Vuku?i?, I. L. Herceg, et al., “Influence od high intensity ultrasound on physical and textural properties of wheat starch,” Croatian Journal of Food Technology, Biotechnology, vol. 4, pp. 134–140, 2011.
[21]
Z. Herceg, S. Mededovic Thagard, V. Batur, and A. Re?ek Jambrak, “Effect of tribomechanical micronisation and activation treatment on textural and thermophysical properties of wheat and potato starch gels,” Food technology and Biotechnology. In press.
[22]
K. S. Sandhu, M. Kaur, N. Singh, and S. T. Lim, “A comparison of native and oxidized normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties,” Food Science and Technology, vol. 41, no. 6, pp. 1000–1010, 2008.
[23]
V. V. Boldyrev, “Mechanochemistry and sonochemistry,” Ultrasonics, vol. 2, no. 2, pp. S143–S145, 1995.
[24]
Z. Q. Huang, J. P. Lu, X. H. Li, and Z. F. Tong, “Effect of mechanical activation on physico-chemical properties and structure of cassava starch,” Carbohydrate Polymers, vol. 68, no. 1, pp. 128–135, 2007.
[25]
G. Kre?i?, V. Lelas, A. Re?ek Jambrak, Z. Herceg, and S. Rimac Brn?i?, “Influence of novel food processing technologies on the rheological and thermo-physical properties of whey proteins,” Journal of Food Engineering, vol. 87, pp. 64–73, 2008.
[26]
N. Singh, K. S. Sandhu, and M. Kaur, “Characterization of starches separated from Indian chickpea (Cicer arietinum L.) cultivars,” Journal of Food Engineering, vol. 63, no. 4, pp. 441–449, 2004.
[27]
J. Singh, L. Kaur, and O. J. McCarthy, “Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review,” Food Hydrocolloids, vol. 21, no. 1, pp. 1–22, 2007.
[28]
J. E. Hodge and E. M. Osman, “Carbohydrates,” in Food Chemistry, O. R. Fennema, Ed., Marcel Dekker, New York, NY, USA, 1996.