全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Central Dopaminergic System and Its Implications in Stress-Mediated Neurological Disorders and Gastric Ulcers: Short Review

DOI: 10.1155/2012/182671

Full-Text   Cite this paper   Add to My Lib

Abstract:

For decades, it has been suggested that dysfunction of dopaminergic pathways and their associated modulations in dopamine levels play a major role in the pathogenesis of neurological disorders. Dopaminergic system is involved in the stress response, and the neural mechanisms involved in stress are important for current research, but the recent and past data on the stress response by dopaminergic system have received little attention. Therefore, we have discussed these data on the stress response and propose a role for dopamine in coping with stress. In addition, we have also discussed gastric stress ulcers and their correlation with dopaminergic system. Furthermore, we have also highlighted some of the glucocorticoids and dopamine-mediated neurological disorders. Our literature survey suggests that dopaminergic system has received little attention in both clinical and preclinical research on stress, but the current research on this issue will surely identify a better understanding of stressful events and will give better ideas for further efficient antistress treatments. 1. Introduction Dopamine (DA) is an important endogenous catecholamine, which exerts widespread effects on both neuronal (as a neurotransmitter) and nonneuronal tissues (as an autocrine or paracrine agent) [1]. Within the central nervous system (CNS), DA binds to specific membrane receptors presented by neurons, and it plays a key role in the control of locomotion, learning, working memory, cognition, and emotion [2, 3]. The brain DA system is involved in various neurological and psychiatric disturbances including Parkinson’s disease, schizophrenia, amphetamine, and cocaine addiction [1, 3]. Therefore, it is considered to be a major target for drug designing applied in the treatment of neurological diseases. Stress has been shown to alter normal dopaminergic neurotransmission [4], and exposure to stress profoundly increases the dopaminergic activity [4, 5] and induces relevant adaptive response of DA receptors in specific brain regions [6]. Stress also activates the hypothalamus-pituitary-adrenal (HPA) axis and releases glucocorticoids (GCs). The interplay between GCs and the dopaminergic system is linked with various neurological disorders such as schizophrenia, bipolar depressive disorder and major depressive disorder, addiction, and Parkinson’s disease [7, 8]. A number of reports showed the involvement of GCs on DA-mediated behavioral responsiveness by the modulatory effects of corticosterone [8–10]. Many reports suggest the involvement of DA system in locomotors alterations under

References

[1]  C. Sarkar, B. Basu, D. Chakroborty, P. S. Dasgupta, and S. Basu, “The immunoregulatory role of dopamine: an update,” Brain, Behavior, and Immunity, vol. 24, no. 4, pp. 525–528, 2010.
[2]  A. Nieoullon and A. Coquerel, “Dopamine: a key regulator to adapt action, emotion, motivation and cognition,” Current Opinion in Neurology, vol. 16, supplement 2, pp. S3–S9, 2003.
[3]  N. Benturquia, C. Courtin, F. Noble, and C. Marie-Claire, “Involvement of D1 dopamine receptor in MDMA-induced locomotor activity and striatal gene expression in mice,” Brain Research, vol. 1211, pp. 1–5, 2008.
[4]  L. Pani, A. Porcella, and G. L. Gessa, “The role of stress in the pathophysiology of the dopaminergic system,” Molecular Psychiatry, vol. 5, no. 1, pp. 14–21, 2000.
[5]  J. Varga, A. Domokos, I. Barna, R. Jankord, G. Bagdy, and D. Zelena, “Lack of vasopressin does not prevent the behavioural and endocrine changes induced by chronic unpredictable stress,” Brain Research Bulletin, vol. 84, no. 1, pp. 45–52, 2011.
[6]  J. Brunelin, T. d'Amato, J. van Os, A. Cochet, M. F. Suaud-Chagny, and M. Saoud, “Effects of acute metabolic stress on the dopaminergic and pituitary-adrenal axis activity in patients with schizophrenia, their unaffected siblings and controls,” Schizophrenia Research, vol. 100, no. 1–3, pp. 206–211, 2008.
[7]  S. S. Daftary, J. Panksepp, Y. Dong, and D. B. Saal, “Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons,” Neuroscience Letters, vol. 452, no. 3, pp. 273–276, 2009.
[8]  K. V. Craenenbroeck, K. D. Bosscher, W. V. Berghe, P. Vanhoenacker, and G. Haegeman, “Role of glucocorticoids in dopamine-related neuropsychiatric disorders,” Molecular and Cellular Endocrinology, vol. 245, no. 1-2, pp. 10–22, 2006.
[9]  S. Cabib and S. Puglisi-Allegra, “The mesoaccumbens dopamine in coping with stress,” Neuroscience and Biobehavioral Reviews, vol. 36, no. 1, pp. 79–89, 2012.
[10]  N. Rasheed, A. Ahmad, C. P. Pandey, R. K. Chaturvedi, M. Lohani, and G. Palit, “Differential response of central dopaminergic system in acute and chronic unpredictable stress models in rats,” Neurochemical Research, vol. 35, no. 1, pp. 22–32, 2010.
[11]  L. A. Pohorecky, A. Sweeny, and P. Buckendahl, “Differential sensitivity to amphetamine's effect on open field behavior of psychosocially stressed male rats,” Psychopharmacology, vol. 218, no. 1, pp. 281–292, 2011.
[12]  J. D. Salamone, M. Correa, S. M. Mingote, and S. M. Weber, “Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine,” Current Opinion in Pharmacology, vol. 5, no. 1, pp. 34–41, 2005.
[13]  S. B. Floresco, “Dopaminergic regulation of limbic-striatal interplay: 2006 CCNP Young Investigator Award,” Journal of Psychiatry and Neuroscience, vol. 32, no. 6, pp. 400–411, 2007.
[14]  D. J. Lodge and A. A. Grace, “Developmental pathology, dopamine, stress and schizophrenia,” International Journal of Developmental Neuroscience, vol. 29, no. 3, pp. 207–213, 2011.
[15]  V. Ozdemir, M. M. Jamal, K. Osapay et al., “Cosegregation of gastrointestinal ulcers and schizophrenia in a large national inpatient discharge database: revisiting the “brain-gut axis” hypothesis in ulcer pathogenesis,” Journal of Investigative Medicine, vol. 55, no. 6, pp. 315–320, 2007.
[16]  T. Brzozowski, P. C. Konturek, S. J. Konturek et al., “Exogenous and endogenous ghrelin in gastroprotection against stress-induced gastric damage,” Regulatory Peptides, vol. 120, no. 1–3, pp. 39–51, 2004.
[17]  J. Landeira-Fernandez and C. V. Grijalva, “Participation of the substantia nigra dopaminergic neurons in the occurrence of gastric mucosal erosions,” Physiology and Behavior, vol. 81, no. 1, pp. 91–99, 2004.
[18]  K. Nishikawa, K. Amagase, and K. Takeuchi, “Effect of dopamine on the healing of acetic acid-induced gastric ulcers in rats,” Inflammopharmacology, vol. 15, no. 5, pp. 209–213, 2007.
[19]  S. F. Saad, A. M. Agha, and A. E. N. S. Amrin, “Effect of bromazepam on stress-induced gastric ulcer in rats and its relation to brain neurotransmitters,” Pharmacological Research, vol. 44, no. 6, pp. 495–501, 2001.
[20]  S. B. Degen, E. J. W. Geven, F. Sluyter, M. W. P. Hof, M. C. J. van der Elst, and A. R. Cools, “Apomorphine-susceptible and apomorphine-unsusceptible Wistar rats differ in their recovery from stress-induced ulcers,” Life Sciences, vol. 72, no. 10, pp. 1117–1124, 2003.
[21]  H. Selye, “Stress and the general adaptation syndrome,” British Medical Journal, vol. 1, no. 4667, pp. 1383–1392, 1950.
[22]  J. J. Radley, K. L. Gosselink, and P. E. Sawchenko, “A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response,” Journal of Neuroscience, vol. 29, no. 22, pp. 7330–7340, 2009.
[23]  M. Asanuma, I. Miyazaki, and N. Ogawa, “Dopamine- or L-DOPA-induced neurotoxicity: the role of dopamine quinone formation and tyrosinase in a model of Parkinson's disease,” Neurotoxicity Research, vol. 5, no. 3, pp. 165–176, 2003.
[24]  J. D. Steketee and P. W. Kalivas, “Drug wanting: behavioral sensitization and relapse to drug-seeking behavior,” Pharmacological Reviews, vol. 63, no. 2, pp. 348–365, 2011.
[25]  S. Cabib and S. Puglisi-Allegra, “Stress, depression and the mesolimbic dopamine system,” Psychopharmacology, vol. 128, no. 4, pp. 331–342, 1996.
[26]  M. Jaber, S. W. Robinson, C. Missale, and M. G. Caron, “Dopamine receptors and brain function,” Neuropharmacology, vol. 35, no. 11, pp. 1503–1519, 1996.
[27]  C. Missale, S. R. Nash, S. W. Robinson, M. Jaber, and M. G. Caron, “Dopamine receptors: from structure to function,” Physiological Reviews, vol. 78, no. 1, pp. 189–225, 1998.
[28]  A. Imperato, L. Angelucci, P. Casolini, A. Zocchi, and S. Puglisi-Allegra, “Repeated stressful experiences differently affect limbic dopamine release during and following stress,” Brain Research, vol. 577, no. 2, pp. 194–199, 1992.
[29]  X. Belda and A. Armario, “Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis,” Psychopharmacology, vol. 206, no. 3, pp. 355–365, 2009.
[30]  J. W. Jahng, V. Ryu, S. B. Yoo, S. J. Noh, J. Y. Kim, and J. H. Lee, “Mesolimbic dopaminergic activity responding to acute stress is blunted in adolescent rats that experienced neonatal maternal separation,” Neuroscience, vol. 171, no. 1, pp. 144–152, 2010.
[31]  S. L. Broom and B. K. Yamamoto, “Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats,” Psychopharmacology, vol. 181, no. 3, pp. 467–476, 2005.
[32]  J. J. Radley and P. E. Sawchenko, “A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response,” Journal of Neuroscience, vol. 31, no. 26, pp. 9683–9695, 2011.
[33]  T. Uehara, T. Sumiyoshi, T. Matsuoka, H. Itoh, and M. Kurachi, “Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex,” Synapse, vol. 61, no. 6, pp. 391–400, 2007.
[34]  G. D. Stuber, D. R. Sparta, A. M. Stamatakis et al., “Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking,” Nature, vol. 475, no. 7356, pp. 377–380, 2011.
[35]  D. G. Harden, D. King, J. M. Finlay, and A. A. Grace, “Depletion of dopamine in the prefrontal cortex decreases the basal electrophysiological activity of mesolimbic dopamine neurons,” Brain Research, vol. 794, no. 1, pp. 96–102, 1998.
[36]  H. Moore, H. J. Rose, and A. A. Grace, “Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons,” Neuropsychopharmacology, vol. 24, no. 4, pp. 410–419, 2001.
[37]  F. L. Groeneweg, H. Karst, E. R. de Kloet, and M. Jo?ls, “Rapid non-genomic effects of corticosteroids and their role in the central stress response,” Journal of Endocrinology, vol. 209, no. 2, pp. 153–167, 2011.
[38]  G. E. Tafet and R. Bernardini, “Psychoneuroendocrinological links between chronic stress and depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 6, pp. 893–903, 2003.
[39]  N. Rasheed, A. Ahmad, N. Singh et al., “Differential response of A 68930 and sulpiride in stress-induced gastric ulcers in rats,” European Journal of Pharmacology, vol. 643, no. 1, pp. 121–128, 2010.
[40]  N. Rasheed, A. Ahmad, M. Al Sheeha, A. Alghasham, and G. Palit, “Neuroprotective and anti-stress effect of A 68930 in acute and chronic unpredictable stress model in rats,” Neuroscience Letters, vol. 504, no. 2, pp. 151–155, 2011.
[41]  K. Mizoguchi, A. Ishige, S. Takeda, M. Aburada, and T. Tabira, “Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function,” Journal of Neuroscience, vol. 24, no. 24, pp. 5492–5499, 2004.
[42]  S. Gandhi, A. Vaarmann, Z. Yao, M. R. Duchen, N. W. Wood, and A. Y. Abramov, “Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease,” PLoS ONE, vol. 7, no. 5, Article ID e37564, 2012.
[43]  Y. Bozzi and E. Borrelli, “Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it?” Trends in Neurosciences, vol. 29, no. 3, pp. 167–174, 2006.
[44]  C. Bédard, M. J. Wallman, E. Pourcher, P. V. Gould, A. Parent, and M. Parent, “Serotonin and dopamine striatal innervation in Parkinson's disease and Huntington's chorea,” Parkinsonism and Related Disorders, vol. 17, no. 8, pp. 593–598, 2011.
[45]  L. H. Shen, M. H. Liao, and Y. C. Tseng, “Recent advances in imaging of dopaminergic neurons for evaluation of neuropsychiatric disorders,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 259349, 14 pages, 2012.
[46]  B. K. Madras, G. M. Miller, and A. J. Fischman, “The dopamine transporter and attention-deficit/hyperactivity disorder,” Biological Psychiatry, vol. 57, no. 11, pp. 1397–1409, 2005.
[47]  H. S. Singer, “Tourette's syndrome: from behaviour to biology,” The Lancet Neurology, vol. 4, no. 3, pp. 149–159, 2005.
[48]  M. J. O'Neill, C. A. Hicks, M. A. Ward et al., “Dopamine D2 receptor agonists protect against ischaemia-induced hippocampal neurodegeneration in global cerebral ischaemia,” European Journal of Pharmacology, vol. 352, no. 1, pp. 37–46, 1998.
[49]  Y. Bozzi, D. Vallone, and E. Borrelli, “Neuroprotective role of dopamine against hippocampal cell death,” Journal of Neuroscience, vol. 20, no. 22, pp. 8643–8649, 2000.
[50]  S. K. Park, M. D. Nguyen, A. Fischer et al., “Par-4 links dopamine signaling and depression,” Cell, vol. 122, no. 2, pp. 275–287, 2005.
[51]  C. Iaccarino, T. A. Samad, C. Mathis, et al., “Control of lactotrop proliferation by dopamine: essential role of signalling through D2 receptors and ERKs,” Proceeding of the National Academy of Sciences USA, vol. 99, pp. 14530–14535, 2002.
[52]  M. J. Webster, M. B. Knable, J. O'Grady, J. Orthmann, and C. S. Weickert, “Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders,” Molecular Psychiatry, vol. 7, no. 9, pp. 985–994, 2002.
[53]  W. R. Perlman, M. J. Webster, J. E. Kleinman, and C. S. Weickert, “Reduced glucocorticoid and estrogen receptor alpha messenger ribonucleic acid levels in the amygdala of patients with major mental illness,” Biological Psychiatry, vol. 56, no. 11, pp. 844–852, 2004.
[54]  D. Cotter and C. M. Pariante, “Stress and the progression of the developmental hypothesis of schizophrenia,” British Journal of Psychiatry, vol. 181, pp. 363–365, 2002.
[55]  J. W. Newcomer, G. Selke, A. K. Melson et al., “Decreased memory performance in healthy humans induced by stress-level cortisol treatment,” Archives of General Psychiatry, vol. 56, no. 6, pp. 527–533, 1999.
[56]  A. K. Heffelfinger and J. W. Newcomer, “Glucocorticoid effects on memory function over the human life span,” Development and Psychopathology, vol. 13, no. 3, pp. 491–513, 2001.
[57]  B. Roozendaal and D. J. F. de Quervain, “Glucocorticoid therapy and memory function: lessons learned from basic research,” Neurology, vol. 64, no. 2, pp. 184–185, 2005.
[58]  G. Sedvall and L. Farde, “Chemical brain anatomy in schizophrenia,” The Lancet, vol. 346, no. 8977, pp. 743–749, 1995.
[59]  P. Brown, “Understanding the inner voices,” New Scientist, vol. 143, no. 1933, pp. 26–31, 1994.
[60]  J. Hietala, E. Syvalahti, K. Vuorio et al., “Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients,” The Lancet, vol. 346, no. 8983, pp. 1130–1131, 1995.
[61]  C. Schmauss, V. Haroutunian, K. L. Davis, and M. Davidson, “Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 8942–8946, 1993.
[62]  M. Lickey and B. Gordon, Medicine and Mental Illness, W. H. Freeman, New York, NY, USA, 1990.
[63]  S. Fahn and D. Sulzer, “Neurodegeneration and neuroprotection in Parkinson disease,” Neurotherapeutics, vol. 1, no. 1, pp. 139–154, 2004.
[64]  H. M. Gao, B. Liu, W. Zhang, and J. S. Hong, “Novel anti-inflammatory therapy for Parkinson's disease,” Trends in Pharmacological Sciences, vol. 24, no. 8, pp. 395–401, 2003.
[65]  I. Kurkowska-Jastrz?bska, T. Litwin, I. Joniec et al., “Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease,” International Immunopharmacology, vol. 4, no. 10-11, pp. 1307–1318, 2004.
[66]  A. Casta?o, A. J. Herrera, J. Cano, and A. Machado, “The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-α IL-1β IFN-γ,” Journal of Neurochemistry, vol. 81, no. 1, pp. 150–157, 2002.
[67]  A. Kanthasamy, H. Jin, S. Mehrotra, R. Mishra, A. Kanthasamy, and A. Rana, “Novel cell death signaling pathways in neurotoxicity models of dopaminergic degeneration: relevance to oxidative stress and neuroinflammation in Parkinson's disease,” NeuroToxicology, vol. 31, no. 5, pp. 555–561, 2010.
[68]  K. W. Lange, T. W. Robbins, C. D. Marsden, M. James, A. M. Owen, and G. M. Paul, “L-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction,” Psychopharmacology, vol. 107, no. 2-3, pp. 394–404, 1992.
[69]  K. W. Lange, G. M. Paul, M. Naumann, and W. Gsell, “Dopaminergic effects on cognitive performance in patients with Parkinson's disease,” Journal of Neural Transmission, Supplement, no. 46, pp. 423–432, 1995.
[70]  M. Cyr, M. Morissette, N. Barden, S. Beaulieu, J. Rochford, and T. Di Paolo, “Dopaminergic activity in transgenic mice underexpressing glucocorticoid receptors: effect of antidepressants,” Neuroscience, vol. 102, no. 1, pp. 151–158, 2001.
[71]  C. A. Caama?o, M. I. Morano, and H. Akil, “Corticosteroid receptors: a dynamic interplay between protein folding and homeostatic control. Possible implications in psychiatric disorders,” Psychopharmacology Bulletin, vol. 35, no. 1, pp. 6–23, 2001.
[72]  K. Mizoguchi, M. Yuzurihara, M. Nagata, A. Ishige, H. Sasaki, and T. Tabira, “Dopamine-receptor stimulation in the prefrontal cortex ameliorates stress-induced rotarod impairment,” Pharmacology Biochemistry and Behavior, vol. 72, no. 3, pp. 723–728, 2002.
[73]  C. M. Pariante and A. H. Miller, “Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment,” Biological Psychiatry, vol. 49, no. 5, pp. 391–404, 2001.
[74]  S. K. Fleming, C. Blasey, and A. F. Schatzberg, “Neuropsychological correlates of psychotic features in major depressive disorders: a review and meta-analysis,” Journal of Psychiatric Research, vol. 38, no. 1, pp. 27–35, 2004.
[75]  D. M. Lyons, J. M. Lopez, C. Yang, and A. F. Schatzberg, “Stress-level cortisol treatment impairs inhibitory control of behavior in monkeys,” Journal of Neuroscience, vol. 20, no. 20, pp. 7816–7821, 2000.
[76]  F. Duval, M. C. Mokrani, M. A. Crocq et al., “Dopaminergic function and the cortisol response to dexamethasone in psychotic depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 24, no. 2, pp. 207–225, 2000.
[77]  D. J. F. de Quervain, B. Roozendaal, and J. L. McGaugh, “Stress and glucocorticoids impair retrieval of long-term spatial memory,” Nature, vol. 394, no. 6695, pp. 787–790, 1998.
[78]  J. R. Calabrese and P. J. Markovitz, “Treatment of depression: new pharmacologic approaches,” Primary Care, vol. 18, no. 2, pp. 421–433, 1991.
[79]  A. J. van der Lely, K. Foeken, R. C. van der Mast, and S. W. J. Lamberts, “Rapid reversal of acute psychosis in the Cushing syndrome with the cortisol-receptor antagonist mifepristone (RU 486),” Annals of Internal Medicine, vol. 114, no. 2, pp. 143–144, 1991.
[80]  O. Sartor and G. B. Cutler Jr., “Mifepristone: treatment of Cushing's syndrome,” Clinical Obstetrics and Gynecology, vol. 39, no. 2, pp. 506–510, 1996.
[81]  J. K. Belanoff, A. J. Rothschild, F. Cassidy et al., “An open label trial of C-1073 (mifepristone) for psychotic major depression,” Biological Psychiatry, vol. 52, no. 5, pp. 386–392, 2002.
[82]  J. W. Chu, D. F. Matthias, J. Belanoff, A. Schatzberg, A. R. Hoffman, and D. Feldman, “Successful long-term treatment of refractory Cushing's disease with high-dose mifepristone (RU 486),” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 8, pp. 3568–3573, 2001.
[83]  A. Basta-Kaim, B. Budziszewska, L. Jaworska-Feil et al., “Mood stabilizers inhibit glucocorticoid receptor function in LMCAT cells,” European Journal of Pharmacology, vol. 495, no. 2-3, pp. 103–110, 2004.
[84]  Q. Wei, X. Y. Lu, L. Liu et al., “Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 32, pp. 11851–11856, 2004.
[85]  P. V. Piazza and M. Le Moal, “The role of stress in drug self-administration,” Trends in Pharmacological Sciences, vol. 19, no. 2, pp. 67–74, 1998.
[86]  P. V. Piazza, M. Barrot, F. Rougé-Pont et al., “Suppression of glucocorticoid secretion and antipsychotic drugs have similar effects on the mesolimbic dopaminergic transmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 26, pp. 15445–15450, 1996.
[87]  P. V. Piazza, V. Deroche-Gamonent, F. Rouge-Pont, and M. Le Moal, “Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction,” Journal of Neuroscience, vol. 20, no. 11, pp. 4226–4232, 2000.
[88]  M. Marinelli, B. Aouizerate, M. Barrot, M. Le Moal, and P. V. Piazza, “Dopamine-dependent responses to morphine depend on glucocorticoid receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 13, pp. 7742–7747, 1998.
[89]  V. Deroche-Gamonet, I. Sillaber, B. Aouizerate et al., “The glucocorticoid receptor as a potential target to reduce cocaine abuse,” Journal of Neuroscience, vol. 23, no. 11, pp. 4785–4790, 2003.
[90]  K. Pacak, O. Tjurmina, M. Palkovits et al., “Chronic hypercortisolemia inhibits dopamine synthesis and turnover in the nucleus accumbens: an in vivo microdialysis study,” Neuroendocrinology, vol. 76, no. 3, pp. 148–157, 2002.
[91]  I. E. M. de Jong and E. R. de Kloet, “Glucocorticoids and vulnerability to psychostimulant drugs: toward substrate and mechanism,” Annals of the New York Academy of Sciences, vol. 1018, pp. 192–198, 2004.
[92]  Y. Taché, H. Yang, M. Miampamba, V. Martinez, and P. Q. Yuan, “Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding,” Autonomic Neuroscience: Basic and Clinical, vol. 125, no. 1-2, pp. 42–52, 2006.
[93]  P. Ericsson, R. H?kanson, J. F. Rehfeld, and P. Norlén, “Gastrin release: antrum microdialysis reveals a complex neural control,” Regulatory Peptides, vol. 161, no. 1–3, pp. 22–32, 2010.
[94]  G. B. Glavin, “Activity of selective dopamine DA1 and DA2 agonists and antagonists on experimental gastric lesions and gastric acid secretion,” Journal of Pharmacology and Experimental Therapeutics, vol. 251, no. 2, pp. 726–730, 1989.
[95]  S. I. Chandranath, S. M. A. Bastaki, A. D'Souza, A. Adem, and J. Singh, “Attenuation of stress-induced gastric lesions by lansoprazole, PD-136450 and ranitidine in rats,” Molecular and Cellular Biochemistry, vol. 349, no. 1-2, pp. 205–212, 2011.
[96]  T. Brzozowski, P. C. Konturek, S. Chlopicki et al., “Therapeutic potential of 1-methylnicotinamide against acute gastric lesions induced by stress: role of endogenous prostacyclin and sensory nerves,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 1, pp. 105–116, 2008.
[97]  M. Yigiter, Y. Albayrak, B. Polat, B. Suleyman, A. B. Salman, and H. Suleyman, “Influence of adrenal hormones in the occurrence and prevention of stress ulcers,” Journal of Pediatric Surgery, vol. 45, no. 11, pp. 2154–2159, 2010.
[98]  R. S. Choung and N. J. Talley, “Epidemiology and clinical presentation of stress-related peptic damage and chronic peptic ulcer,” Current Molecular Medicine, vol. 8, no. 4, pp. 253–257, 2008.
[99]  G. Fink, “Stress controversies: post-traumatic stress disorder, hippocampal volume, gastroduodenal ulceration,” Journal of Neuroendocrinology, vol. 23, no. 2, pp. 107–117, 2011.
[100]  M. L. Schubert, “Gastric exocrine and endocrine secretion,” Current Opinion in Gastroenterology, vol. 25, no. 6, pp. 529–536, 2009.
[101]  R. R. Strang, “The association of gastro-duodenal ulceration and Parkinson's disease,” The Medical Journal of Australia, vol. 310, pp. 842–843, 1965.
[102]  S. Szabo, “Dopamine disorder in duodenal ulceration,” The Lancet, vol. 2, no. 8148, pp. 880–882, 1979.
[103]  E. S. Chung, Y. C. Chung, E. Bok et al., “Fluoxetine prevents LPS-induced degeneration of nigral dopaminergic neurons by inhibiting microglia-mediated oxidative stress,” Brain Research, vol. 1363, pp. 143–150, 2010.
[104]  A. Kumar, A. Prakash, and D. Pahwa, “Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat,” Brain Research Bulletin, vol. 85, no. 3-4, pp. 158–168, 2011.
[105]  M. Roghani, A. Niknam, M. R. Jalali-Nadoushan, Z. Kiasalari, M. Khalili, and T. Baluchnejadmojarad, “Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism,” Brain Research Bulletin, vol. 82, no. 5-6, pp. 279–283, 2010.
[106]  G. B. Glavin, “Dopamine and gastroprotection. The brain-gut axis,” Digestive Diseases and Sciences, vol. 36, no. 12, pp. 1670–1672, 1991.
[107]  E. A. Mayer, “The neurobiology of stress and gastrointestinal disease,” Gut, vol. 47, no. 6, pp. 861–869, 2000.
[108]  S. J. Gray, J. A. Benson, and R. W. Reifenstein, “Chronic stress and peptic ulcer. I. Effect of corticotropin (ACTH) and cortisone on gastric secretion,” The Journal of the American Medical Association, vol. 147, no. 16, pp. 1529–1537, 1951.
[109]  J. L. Willems, W. A. Buylaert, R. A. Lefebvre, and M. G. Bogaert, “Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system,” Pharmacological Reviews, vol. 37, no. 2, pp. 165–216, 1985.
[110]  G. B. Glavin, “Dopamine: a stress modulator in the brain and gut,” General Pharmacology, vol. 23, no. 6, pp. 1023–1026, 1992.
[111]  L. P. Xing, C. Balaban, J. Seaton, J. Washington, and G. Kauffman, “Mesolimbic dopamine mediates gastric mucosal protection by central neurotensin,” American Journal of Physiology, vol. 260, no. 1, pp. G34–G38, 1991.
[112]  P. G. Henke, “Limbic lesions and the energizing, aversive, and inhibitory effects of non-reward in rats,” Canadian Journal of Psychology, vol. 33, no. 3, pp. 133–140, 1979.
[113]  W. Hoogerwerf and P. J. Pasricha, “Pharmacotherapy of gastric acidity, peptic ulcers, and gastroesophageal reflux disease,” in The Pharmacological Basis of Therapeutics, L. L. Brunton, J. S. Lazo, and K. L. Parker, Eds., pp. 967–981, Mc Graw Hill, New York, NY, USA, 2006.
[114]  J. D. Valle, “Peptic ulcer disease and related disorders,” in Harrison's Principles of Internal Medicine, A. S. Fauci, E. Braunwald, D. L. Kasper et al., Eds., pp. 1855–1871, Mc Graw Hill, New York, NY, USA, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133