全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Molecular Sizes of Chondroitin Sulfate on Interaction with L-Selectin

DOI: 10.1155/2013/856142

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chondroitin sulfate (CS) is a glycosaminoglycan (GAG) side chain of proteoglycans (PGs) which are widely distributed in the extracellular matrix and at cell surface. CS shows a highly structural diversity in not only molecular weight (MW) but sulfonation pattern. CS has been reported to exert anti-inflammatory activity by having effects on cytokine production by helper T cells. In this study, we focused on the structures of CS chains, especially MW of CS, and investigated effect of the different MW of CS on binding affinity with L-selectin and cytokine production by murine splenocytes. Firstly, we fractionated CS by employing gel filtration chromatography and obtained several CS fractions with different MW. Then the interaction between fractionated CS and L-selectin was analyzed by surface plasmon resonance (SPR). Finally, the influence of MW of CS on cytokine production by murine splenocytes was investigated in vitro. The results showed that interferon-gamma production was significantly increased by mouse splenocytes cocultivated with CS. On the contrary, CS inhibited interleukin 5 production by murine splenocytes depending on MW of the cocultivated CS. These results strongly indicate the existence of the optimal molecular size for an anti-inflammatory effect of CS through cytokine production by murine splenocytes. 1. Introduction Chondroitin sulfate (CS) belongs to a family of glycosaminoglycans (GAG), which is a linear, sulfonated polysaccharide, such as heparin (HP), heparan sulfate (HS), and dermatan sulfate (DS). CS is composed of a repeating disaccharide unit, [-4) GlcA (β1-3) GalNAc (β1-]n, where GlcA is glucuronate and GalNAc is N-acetylgalactosamine [1]. CS chains show structural diversity because sulfonate groups can be bound to variety positions of the disaccharide units, and its molecular weight (MW) is also highly variable due to different numbers of the disaccharide unit [2–4]. On the other hand, it is well known that CS and other GAGs form conjugates with the specific proteins called proteoglycans (PGs) and PGs are ubiquitously distributed in not only extracellular matrix but also on cell surface in animal tissues. PGs are thought to be participating in cell-cell communications such as a cell adhesion and signalling events via proteins, especially; HS chains can control a signalling by interacting with cell growth factors and HP has been widely used as an anticoagulant agent [5–7]. Correspondingly, CS has also a similar function and it has been reported that CS contributes to various bioactivities, for example, development of central

References

[1]  L. Roden, “Structure and metabolism of connective tissue proteoglycans,” in The Biochemistry of Glycoproteins and Proteoglycans, pp. 267–371, Plenum Press, New York, NY, USA, 1980.
[2]  K. Kimata, M. Okayama, A. Oohira, and S. Suzuki, “Cytodifferentiation and proteoglycan biosynthesis,” Molecular and Cellular Biochemistry, vol. 1, no. 2, pp. 211–228, 1973.
[3]  T. Toida, H. Toyoda, and T. Imanari, “High-resolution proton nuclear magnetic resonance studies on chondroitin sulfates,” Analytical Sciences, vol. 9, pp. 53–58, 1993.
[4]  J. E. Scott, “Structure and function in extracellular matrices depend on interactions between anionic glycosaminoglycans,” Pathologie Biologie, vol. 49, no. 4, pp. 284–289, 2001.
[5]  K. Sugahara, T. Mikami, T. Uyama, S. Mizuguchi, K. Nomura, and H. Kitagawa, “Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate,” Current Opinion in Structural Biology, vol. 13, no. 5, pp. 612–620, 2003.
[6]  A. Salustri, A. Camaioni, M. di Giacomo, C. Fulop, and V. C. Hascall, “Hyaluronan and proteoglycans in ovarian follicles,” Human Reproduction Update, vol. 5, no. 4, pp. 293–301, 1999.
[7]  M. Yoneda, S. Shimizu, Y. Nishi, M. Yamagata, S. Suzuki, and K. Kimata, “Hyaluronic acid-dependent change in the extracellular matrix of mouse dermal fibroblasts that is conducive to cell proliferation,” Journal of Cell Science, vol. 90, no. 2, pp. 275–286, 1988.
[8]  G. S. Kelly, “The role of glucosamine sulfate and chondroitin sulfates in the treatment of degenerative joint disease,” Alternative Medicine Review, vol. 3, no. 1, pp. 27–39, 1998.
[9]  T. Omata, Y. Segawa, Y. Itokazu, N. Inoue, and Y. Tanaka, “Effects of chondroitin sulfate-C on bradykinin-induced proteoglycan depletion in rats,” Arzneimittel-Forschung/Drug Research, vol. 49, no. 7, pp. 577–581, 1999.
[10]  J. Beren, S. L. Hill, M. Diener-West, and N. R. Rose, “Effect of pre-loading oral glucosamine HCI/chondroitin sulfate/manganese ascorbate combination on expierimental arthritis in rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 226, no. 2, pp. 144–151, 2001.
[11]  G. Rovetta, “Galactosaminoglycuronoglycan sulfate (Matrix) in therapy of tibiofibular osteoarthritis of the knee,” Drugs under Experimental and Clinical Research, vol. 17, no. 1, pp. 53–57, 1991.
[12]  S. Sakai, H. Akiyama, N. Harikai et al., “Effect of chondroitin sulfate on murine splenocytes sensitized with ovalbumin,” Immunology Letters, vol. 84, no. 3, pp. 211–216, 2002.
[13]  H. Akiyama, S. Sakai, R. J. Linhardt, Y. Goda, T. Toida, and T. Maitani, “Chondroitin sulphate structure affects its immunological activities on murine splenocytes sensitized with ovalbumin,” Biochemical Journal, vol. 382, no. 1, pp. 269–278, 2004.
[14]  S. Haylock-Jacobs, M.B. Keough, L. Lau, and V. W. Yon, “Chondroitin sulphate proteoglycans: extracellular matrix proteins that regulate immunity of the central nervous system,” Autoimmunity Reviews, vol. 10, no. 12, pp. 766–772, 2011.
[15]  H. Kawashima, Y. F. Li, N. Watanabe, J. Hirose, M. Hirose, and M. Miyasaka, “Identification and characterization of ligands for L-selectin in the kidney. I. Versican, a large chondroitin sulfate proteoglycan, is a ligand for L-selectin,” International Immunology, vol. 11, no. 3, pp. 393–405, 1999.
[16]  H. Kawashima, M. Hirose, J. Hirose, D. Nagakubo, A. H. K. Plaas, and M. Miyasaka, “Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44,” Journal of Biological Chemistry, vol. 275, no. 45, pp. 35448–35456, 2000.
[17]  H. Kawashima, K. Atarashi, M. Hirose et al., “Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4,6-O-disulfate) interact with L- and P-selectin and chemokines,” Journal of Biological Chemistry, vol. 277, no. 15, pp. 12921–12930, 2002.
[18]  J. Hirose, H. Kawashima, O. Yoshie, K. Tashiro, and M. Miyasaka, “Versican interacts with chemokines and modulates cellular responses,” Journal of Biological Chemistry, vol. 276, no. 7, pp. 5228–5234, 2001.
[19]  A. K. Abbas, K. M. Murphy, and A. Sher, “Functional diversity of helper T lymphocytes,” Nature, vol. 383, no. 6603, pp. 787–793, 1996.
[20]  K. M. Murphy and S. L. Reiner, “The lineage decisions of helper T cells,” Nature Reviews Immunology, vol. 2, no. 12, pp. 933–944, 2002.
[21]  T. Toida, K. Sato, N. Sakamoto, S. Sakai, S. Hosoyama, and R. J. Linhardt, “Solvolytic depolymerization of chondroitin and dermatan sulfates,” Carbohydrate Research, vol. 344, no. 7, pp. 888–893, 2009.
[22]  H. Toyoda, K. Shinomiya, S. Yamanashi, I. Koshiishi, and T. Imanari, “Microdetermination of unsaturated disaccharide’s produced from chondroitinsulfates in rabbit plasma by high-performance liquid chromatography with fluorometric detection,” Analytical Sciences, vol. 4, pp. 381–384, 1988.
[23]  H. Toyoda, K. Motoki, M. Tanikawa, K. Shinomiya, H. Akiyama, and T. Imanari, “Determination of human urinary hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharides by high-performance liquid chromatography,” Journal of Chromatography, vol. 565, no. 1-2, pp. 141–148, 1991.
[24]  J. A. Santos, B. Mulloy, and P. A. S. Mourao, “Structural diversity among sulfated α-L-galactans from ascidians (tunicates)—studies on the species Ciona intestinalis and Herdmania monus,” The European Journal of Biochemistry, vol. 204, no. 2, pp. 669–677, 1992.
[25]  A. P. Alves, B. Mulloy, J. A. Diniz, and P. A. S. Mour?o, “Sulfated polysaccharides from the egg jelly layer are species-specific inducers of acrosomal reaction in sperms of sea urchins,” Journal of Biological Chemistry, vol. 272, no. 11, pp. 6965–6971, 1997.
[26]  W. R. L. Farias, A. P. Valente, M. S. Pereira, and P. A. S. Mour?o, “Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates,” Journal of Biological Chemistry, vol. 275, no. 38, pp. 29299–29307, 2000.
[27]  Y. M. Michelacci and C. P. Dietrich, “Structure of chondroitin sulphate from whale cartilage: distribution of 6- and 4-sulphated oligosaccharides in the polymer chains,” International Journal of Biological Macromolecules, vol. 8, no. 2, pp. 108–113, 1986.
[28]  D. Vestweber and J. E. Blanks, “Mechanisms that regulate the function of the selectins and their ligands,” Physiological Reviews, vol. 79, no. 1, pp. 181–213, 1999.
[29]  M. P. Bevilacqua and R. M. Nelson, “Selectins,” Journal of Clinical Investigation, vol. 91, no. 2, pp. 379–387, 1993.
[30]  S. D. Rosen and C. R. Bertozzi, “The selectins and their ligands,” Current Opinion in Cell Biology, vol. 6, no. 5, pp. 663–673, 1994.
[31]  E. L. Berg, L. M. McEvoy, C. Berlin, R. F. Bargatze, and E. C. Butcher, “L-selectin-mediated lymphocyte rolling on MAdCAM-1,” Nature, vol. 366, no. 6456, pp. 695–698, 1993.
[32]  S. Baumhueter, M. S. Singer, W. Henzel et al., “Binding of L-selectin to the vascular sialomucin CD34,” Science, vol. 262, no. 5132, pp. 436–438, 1993.
[33]  C. Sassetti, K. Tangemann, M. S. Singer, D. B. Kershaw, and S. D. Rosen, “Identification of Podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34,” Journal of Experimental Medicine, vol. 187, no. 12, pp. 1965–1975, 1998.
[34]  Y. Imai, L. A. Lasky, and S. D. Rosen, “Sulphation requirement for GlyCAM-1, an endothelial ligand for L-selectin,” Nature, vol. 361, no. 6412, pp. 555–557, 1993.
[35]  M. L. Arbonés, D. C. Ord, K. Ley et al., “Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice,” Immunity, vol. 1, no. 4, pp. 247–260, 1994.
[36]  T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman, “Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins,” Journal of Immunology, vol. 136, no. 7, pp. 2348–2357, 1986.
[37]  F. Petersen, L. Bock, H. D. Flad, and E. Brandt, “A chondroitin sulfate proteoglycan on human neutrophils specifically binds platelet factor 4 and is involved in cell activation,” Journal of Immunology, vol. 161, no. 8, pp. 4347–4355, 1998.
[38]  P. Morreale, R. Manopulo, M. Galati, L. Boccanera, G. Saponati, and L. Bocchi, “Comparison of the antiinflammatory efficacy of chondroitin sulfate and diclofenac sodium in patients with knee osteoarthritis,” Journal of Rheumatology, vol. 23, no. 8, pp. 1385–1391, 1996.
[39]  F. Ronca, L. Palmieri, P. Panicucci, and G. Ronca, “Anti-inflammatory activity of chondroitin sulfate,” Osteoarthritis and Cartilage, vol. 6, pp. 14–21, 1998.
[40]  J. Zhou, P. Nagarkatti, Y. Zhong, and M. Nagarkatti, “Immune modulation by chondroitin sulfate and its degraded disaccharide product in the development of an experimental model of multiple sclerosis,” Journal of Neuroimmunology, vol. 223, no. 1-2, pp. 55–64, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133