全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Phenotypic and Molecular Characterization of MCF10DCIS and SUM Breast Cancer Cell Lines

DOI: 10.1155/2013/872743

Full-Text   Cite this paper   Add to My Lib

Abstract:

We reviewed the phenotypic and molecular characteristics of MCF10DCIS.com and the SUM cell lines based on numerous studies performed over the years. The major signaling pathways that give rise to the phenotype of these cells may serve as a good resource of information when researchers in drug discovery and development use these cells to identify novel targets and biomarkers. Major signaling pathways and mutations affecting the coding sequence are also described providing important information when using these cells as a model in a variety of studies. 1. Introduction Human tumor-derived cell lines grown in vitro and in vivo are important models to study cancer development, progression, and therapeutic response and resistance to anticancer drugs. However, for the last several years the relevance of cell lines in clinical cancer research has been criticized due to the properties of cell lines that differ when compared with primary tumor cells. New technologies such as next generation sequencing have enabled molecular characterization and identification of signaling pathways in specific cell lines. This characterization has facilitated the identification of cancer cell lines that are more clinically relevant for biological experiments as well as drug research and development. In addition, well characterized cells enable the identification of potential biomarkers for the development of companion diagnostics. Although there are still limitations with the relevance to the clinic, well characterized cancer cell lines will continue to be an important source for drug R&D and studying cancer biology. In this paper, we review relevant information available in numerous studies that encompass the characterization of the different breast cancer cell lines available at Asterand US. This review will be a valuable resource for researchers in academia and industry for the use of the relevant cell type in their research. The MCF10DCIS cell line was licensed to Asterand US by Wayne State University and the SUM cell lines were licensed to Asterand US by the University of Michigan. 2. MCF10DCIS.com MCF10DCIS.com is a clonal breast cancer cell line derived from a xenograft originating from premalignant MCF10AT cells that were injected into severe combined immune-deficient mice. The morphology of the MCF10DCIS cell line is shown in Figure 1. Injection of the MCF10DCIS cells into SCID mice resulted in rapidly growing lesions that are predominantly comedo ductal carcinoma in situ. Solid or comedo growth patterns are high grade ductal carcinoma in situ [1]. MCF10DCIS cells were

References

[1]  F. R. Miller, S. J. Santner, L. Tait, and P. J. Dawson, “MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ,” Journal of the National Cancer Institute, vol. 92, no. 14, pp. 1185–1186, 2000.
[2]  L. M. Polizzotti, B. Oztan, C. S. Bjornsson, et al., “Novel image analysis approach quantifies morphological characteristics of 3D breast culture acini with varying metastatic potentials,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 102036, 16 pages, 2012.
[3]  H. Ponta, L. Sherman, and P. A. Herrlich, “CD44: from adhesion molecules to signalling regulators,” Nature Reviews Molecular Cell Biology, vol. 4, no. 1, pp. 33–45, 2003.
[4]  J. Y. So, H. J. Lee, P. Kramata, et al., “Differential expression of key signaling proteins in MCF10 cell lines, a human breast cancer progression model,” Molecular and Cellular Pharmacology, vol. 4, no. 1, pp. 31–40, 2012.
[5]  M. Z?ller, “CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?” Nature Reviews Cancer, vol. 11, no. 4, pp. 254–267, 2011.
[6]  V. Orian-Rousseau, H. Morrison, A. Matzke et al., “Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin,” Molecular Biology of the Cell, vol. 18, no. 1, pp. 76–83, 2007.
[7]  Y. Liu, N. Chen, X. Cui et al., “The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis,” Oncogene, vol. 29, no. 44, pp. 5883–5894, 2010.
[8]  J. S. Sebolt-Leopold and R. Herrera, “Targeting the mitogen-activated protein kinase cascade to treat cancer,” Nature Reviews Cancer, vol. 4, no. 12, pp. 937–947, 2004.
[9]  R. Kumar, A. E. Gururaj, and C. J. Barnes, “p21-activated kinases in cancer,” Nature Reviews Cancer, vol. 6, no. 6, pp. 459–471, 2006.
[10]  G. M. Bokoch, “Biology of the p21-activated kinases,” Annual Review of Biochemistry, vol. 72, pp. 743–781, 2003.
[11]  F. Mbeunkui, B. J. Metge, L. A. Shevde, and L. K. Pannell, “Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer,” Journal of Proteome Research, vol. 6, no. 8, pp. 2993–3002, 2007.
[12]  L. Ma, J. Teruya-Feldstein, and R. A. Weinberg, “Tumour invasion and metastasis initiated by microRNA-10b in breast cancer,” Nature, vol. 449, no. 7163, pp. 682–688, 2007.
[13]  C. C. Ong, A. M. Jubb, P. M. Haverty et al., “Targeting p21-activated kinase 1 (PAK1) to induce apoptosis of tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 17, pp. 7177–7182, 2011.
[14]  K. D. Courtney, R. B. Corcoran, and J. A. Engelman, “The PI3K pathway as drug target in human cancer,” Journal of Clinical Oncology, vol. 28, no. 6, pp. 1075–1083, 2010.
[15]  J. Y. So, H. J. Lee, A. K. Smolarek, et al., “A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer,” Molecular Pharmacology, vol. 79, pp. 360–367, 2011.
[16]  P. K. Vogt, J. R. Hart, M. Gymnopolous, et al., “Phosphatidylinositol 3-Kinase: the oncoprotein,” Current Topics in Microbiology and Immunology, vol. 347, pp. 79–104, 2011.
[17]  N. Y. Kalaany and D. M. Sabatini, “Tumours with PI3K activation are resistant to dietary restriction,” Nature, vol. 458, no. 7239, pp. 725–731, 2009.
[18]  F. Janku, A. M. Tsimberidou, I. Garrido-Laguna et al., “PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors,” Molecular Cancer Therapeutics, vol. 10, no. 3, pp. 558–565, 2011.
[19]  A. Chakrabarty, B. N. Rexer, S. E. Wang, R. S. Cook, J. A. Engelman, and C. L. Arteaga, “H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation by heregulin production and activation of HER3,” Oncogene, vol. 29, no. 37, pp. 5193–5203, 2010.
[20]  M. P. V. Shekhar, L. Tait, R. J. Pauley et al., “Comedo-ductal carcinoma in situ: a paradoxical role for programmed cell death,” Cancer Biology and Therapy, vol. 7, no. 11, pp. 1774–1782, 2008.
[21]  V. Espina, B. D. Mariani, R. I. Gallagher et al., “Malignant precursor cells pre-exist in human breast DCIS and require autophagy for survival,” PLoS ONE, vol. 5, no. 4, Article ID e10240, 2010.
[22]  J. A. Joyce and J. W. Pollard, “Microenvironmental regulation of metastasis,” Nature Reviews Cancer, vol. 9, no. 4, pp. 239–252, 2009.
[23]  L. R. Tait, R. J. Pauley, S. J. Santner et al., “Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts,” International Journal of Cancer, vol. 120, no. 10, pp. 2127–2134, 2007.
[24]  A. Tsutsumi, H. Okada, T. Nakamoto, R. Okamoto, K. Yasuda, and H. Kanzaki, “Estrogen induces stromal cell-derived factor 1 (SDF-1/CXCL12) production in human endometrial stromal cells: a possible role of endometrial epithelial cell growth,” Fertility and Sterility, vol. 95, no. 1, pp. 444–447, 2011.
[25]  J. M. Hall and K. S. Korach, “Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells,” Molecular Endocrinology, vol. 17, no. 5, pp. 792–803, 2003.
[26]  J. A. Burger and T. J. Kipps, “CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment,” Blood, vol. 107, no. 5, pp. 1761–1767, 2006.
[27]  S. A. Brooks, H. J. Lomax-Browne, T. M. Carter, C. E. Kinch, and D. M. S. Hall, “Molecular interactions in cancer cell metastasis,” Acta Histochemica, vol. 112, no. 1, pp. 3–25, 2010.
[28]  U. Anna, A. U. Newlaczyl, and L. Yu, “Galectin-3—a jack-of-all-trades in cancer playing an important role in cancer cell growth, transformation,” Cancer Letters, vol. 313, no. 2, pp. 123–128, 2011.
[29]  H. M. Amm and D. J. Buschsbaum, “Relationship between galectin-3 expression and TRAIL sensitivity in breast cancer,” Expert Review of Anticancer Therapy, vol. 11, no. 8, pp. 1193–1196, 2011.
[30]  L. A. Shevde, B. J. Metge, A. Mitra et al., “Spheroid-forming subpopulation of breast cancer cells demonstrates vasculogenic mimicry via hsa-miR-299-5p regulated de novo expression of osteopontin,” Journal of Cellular and Molecular Medicine, vol. 14, no. 6, pp. 1693–1706, 2010.
[31]  S. P. Ethier, M. L. Mahacek, W. J. Gullick, et al., “Differential isolation of normal luminal mammary epithelial cells and breast cancer cells from primary and metastatic sites using selective media,” Cancer Research, vol. 53, pp. 627–635, 1993.
[32]  S. P. Ethier, “Human breast cancer cell lines as models of growth regulation and disease progression,” Journal of Mammary Gland Biology and Neoplasia, vol. 1, no. 1, pp. 111–121, 1996.
[33]  C. I. Sartor, M. L. Dziubinski, C. L. Yu, R. Jove, and S. P. Ethier, “Role of epidermal growth factor receptor and STAT-3 activation in autonomous proliferation of SUM-102PT human breast cancer cells,” Cancer Research, vol. 57, no. 5, pp. 978–987, 1997.
[34]  F. Forozan, R. Veldman, C. A. Ammerman et al., “Molecular cytogenetic analysis of 11 new breast cancer cell lines,” British Journal of Cancer, vol. 81, no. 8, pp. 1328–1334, 1999.
[35]  P. J. Keller, A. F. Lin, L. M. Arendt et al., “Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines,” Breast Cancer Research, vol. 12, no. 5, article R87, 2010.
[36]  R. M. Neve, K. Chin, J. Fridlyand et al., “A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes,” Cancer Cell, vol. 10, no. 6, pp. 515–527, 2006.
[37]  S. Dawood, S. D. Merajver, P. Viens et al., “International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment,” Annals of Oncology, vol. 22, no. 3, pp. 515–523, 2011.
[38]  E. Charafe-Jauffret, C. Ginestier, F. Iovino et al., “Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer,” Clinical Cancer Research, vol. 16, no. 1, pp. 45–55, 2010.
[39]  F. M. Robertson and M. Cristofinilli, “New therapeutic targets in Inflammatory breast cancer,” Current breast cancer reports, vol. 4, no. 4, pp. 264–270, 2012.
[40]  W. A. Woodward, B. G. Debeb, W. Xu, and T. A. Buchholz, “Overcoming radiation resistance in inflammatory breast cancer,” Cancer, vol. 116, supplement 11, pp. 2840–2845, 2010.
[41]  G. G. Van Den Eynden, S. J. Van Laere, I. Van der Auwera et al., “Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer,” Breast Cancer Research and Treatment, vol. 95, no. 3, pp. 219–228, 2006.
[42]  B. C. Victor, A. Anbalagan, M. M. Mohamed, et al., “Inhibition of cathesin B activity attenuates extracellulaer matrix degradation and inflammatory breast cancer invasion,” Breast Cancer Research, vol. 13, article R115, 2011.
[43]  G. G. Van Den Eynden, S. J. Van Laere, I. Van der Auwera, et al., “Overexpression of calveolin-1 and -2 in cell lines and in human samples of human inflammatory breast cancer,” Breast cancer Research and Treatment, vol. 95, no. 3, pp. 219–228, 2006.
[44]  K. Yuan, C. Huang, J. Fox et al., “Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and Nuclear Factor κB (NF-κB),” Journal of Biological Chemistry, vol. 286, no. 24, pp. 21814–21825, 2011.
[45]  K. Gudmundsdottir and A. Ashworth, “The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability,” Oncogene, vol. 25, no. 43, pp. 5864–5874, 2006.
[46]  F. Elstrodt, A. Hollestelle, J. H. A. Nagel et al., “BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants,” Cancer Research, vol. 66, no. 1, pp. 41–45, 2006.
[47]  T. S?rlie, R. Tibshirani, J. Parker et al., “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8418–8423, 2003.
[48]  A. Hollestelle, J. H. A. Nagel, M. Smid et al., “Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines,” Breast Cancer Research and Treatment, vol. 121, no. 1, pp. 53–64, 2010.
[49]  R. B. Bar-Sade, A. Kruglikova, B. Modan et al., “The 185delAG BRCA1 mutation originated before the dispersion of Jews in the Diaspora and is not limited to Ashkenazim,” Human Molecular Genetics, vol. 7, no. 5, pp. 801–805, 1998.
[50]  J. Smith, L. Mun Tho, N. Xu, and D. A. Gillespie, “The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer,” Advances in Cancer Research, vol. 108, pp. 73–112, 2010.
[51]  P. Domagala, D. Wokolorczyk, C. Cybulski, T. Huzarski, J. Lubinski, and W. Domagala, “Different CHEK2 germline mutations are associated with distinct immunophenotypic molecular subtypes of breast cancer,” Breast Cancer Research and Treatment, vol. 7, no. 5, pp. 801–805, 2011.
[52]  M. Wasielewski, P. Hanifi-Moghaddam, A. Hollestelle et al., “Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines,” Breast Cancer Research and Treatment, vol. 113, no. 2, pp. 285–291, 2009.
[53]  N. Tung and D. P. Silver, “Chek2 DNA Damage Response Pathway and Inherited Breast Cancer Risk,” Journal of Clinical Oncology, vol. 29, no. 28, pp. 3813–3815, 2011.
[54]  G. Zoppoli, S. Solier, W. C. Reinhold, et al., “CHEK2 genomic and proteomic analyses reveal genetic inactivation or endogenous activation across the 60 cell lines of the US National Cancer Institute,” Oncogene, vol. 31, pp. 403–418, 2012.
[55]  K. H. Vousden and X. Lu, “Live or let die: the cell's response to p53,” Nature Reviews Cancer, vol. 2, no. 8, pp. 594–604, 2002.
[56]  T. Ozaki and A. Nakagawara, “Role of p53 in cell death and human cancers,” Cancers, vol. 3, no. 1, pp. 994–1013, 2011.
[57]  M. Wasielewski, F. Elstrodt, J. G. M. Klijn, E. M. J. J. Berns, and M. Schutte, “Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines,” Breast Cancer Research and Treatment, vol. 99, no. 1, pp. 97–101, 2006.
[58]  D. Polsky, B. C. Bastian, C. Hazan et al., “HDM2 protein overexpression, but not gene amplification, is related to tumorigenesis of cutaneous melanoma,” Cancer Research, vol. 61, no. 20, pp. 7642–7646, 2001.
[59]  A. Agrawal, J. Yang, R. F. Murphy, and D. K. Agrawal, “Regulation of the p14ARF-Mdm2-p53 pathway: an overview in breast cancer,” Experimental and Molecular Pathology, vol. 81, no. 2, pp. 115–122, 2006.
[60]  A. W. Lin and S. W. Lowe, “Oncogenic ras activates the ARF-p53 pathway to suppress epithelial cell transformation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5025–5030, 2001.
[61]  W. G. Yarbrough, M. Bessho, A. Zanation, J. E. Bisi, and Y. Xiong, “Human tumor suppressor ARF impedes S-phase progression independent of p53,” Cancer Research, vol. 62, no. 4, pp. 1171–1177, 2002.
[62]  E. Hernando, Z. Nahlé, G. Juan et al., “Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control,” Nature, vol. 430, no. 7001, pp. 797–802, 2004.
[63]  R. A. Weinberg, “The retinoblastoma protein and cell cycle control,” Cell, vol. 81, no. 3, pp. 323–330, 1995.
[64]  E. S. Knudsen and K. E. Knudsen, “Tailoring to RB: tumour suppressor status and therapeutic response,” Nature Reviews Cancer, vol. 8, no. 9, pp. 714–724, 2008.
[65]  T. Nobori, K. Miura, D. J. Wu, A. Lois, K. Takabayashi, and D. A. Carson, “Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers,” Nature, vol. 368, no. 6473, pp. 753–756, 1994.
[66]  J. I. Herschkowitz, X. He, C. Fan, and C. M. Perou, “The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas,” Breast Cancer Research, vol. 10, no. 5, article R75, 2008.
[67]  A. Arnold and A. Papanikolaou, “Cyclin D1 in breast cancer pathogenesis,” Journal of Clinical Oncology, vol. 23, no. 18, pp. 4215–4224, 2005.
[68]  A. Ertel, J. L. Dean, H. Rui et al., “RB-pathway disruption in breast cancer: differential association with disease subtypes, disease-specific prognosis and therapeutic response,” Cell Cycle, vol. 9, no. 20, pp. 4153–4163, 2010.
[69]  A. Hollestelle, F. Elstrodt, J. H. A. Nagel, W. W. Kallemeijn, and M. Schutte, “Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines,” Molecular Cancer Research, vol. 5, no. 2, pp. 195–201, 2007.
[70]  Y. Pylayeva-Gupta, E. Grabockaand, and D. Bar-Sagi, “RAS oncogenes: weaving a tumorigenic web,” Nature Reviews Cancer, vol. 11, pp. 761–774, 2011.
[71]  B. M. Gumbiner, “Regulation of cadherin-mediated adhesion in morphogenesis,” Nature Reviews Molecular Cell Biology, vol. 6, no. 8, pp. 622–634, 2005.
[72]  F. Van Roy and G. Berx, “The cell-cell adhesion molecule E-cadherin,” Cellular and Molecular Life Sciences, vol. 65, no. 23, pp. 3756–3788, 2008.
[73]  T. Tanaka, M. Lino, and K. Goto, “Knockdown of Sec6 improves cell-cell adhesion by increasing á-E-catenin in oral cancer cells,” FEBS Letters, vol. 586, no. 6, pp. 924–933, 2012.
[74]  A. Hollestelle, F. Elstrodt, M. Timmermans et al., “Four human breast cancer cell lines with biallelic inactivating α-catenin gene mutations,” Breast Cancer Research and Treatment, vol. 122, no. 1, pp. 125–133, 2010.
[75]  Patriarca, R. M. Macchi, A. K. Marschner, and H. Mellested, “Epithelial cell adhesion molecule expression (CD326) in cancer: a short review,” Cancer Treatment Reviews, vol. 38, no. 1, pp. 68–75, 2012.
[76]  D. Maetzel, S. Denzel, B. Mack et al., “Nuclear signalling by tumour-associated antigen EpCAM,” Nature Cell Biology, vol. 11, no. 2, pp. 162–171, 2009.
[77]  B. Mostert, J. Kraan J, A. M. Sieuwerts, P. van der Spoel, et al., “CD49f-based selection of circulating tumor cells (CTCs) improves detection across breast cancer subtypes,” Cancer Letters, vol. 319, pp. 49–55, 2012.
[78]  E. Lim, F. Vaillant, D. Wu et al., “Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers,” Nature Medicine, vol. 15, no. 8, pp. 907–913, 2009.
[79]  H. Strohmaier, C. H. Spruck, P. Kaiser, K. A. Won, O. Sangfelt, and S. I. Reed, “Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line,” Nature, vol. 413, no. 6853, pp. 316–322, 2001.
[80]  S. A. Gayther, S. J. Bailey, L. Linger, et al., “Mutations truncating the EP300 acetylase in human cancer,” Nature Genetics, vol. 32, pp. 300–203, 2000.
[81]  L. H. Saal, K. Holm, M. Maurer et al., “PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma,” Cancer Research, vol. 65, no. 7, pp. 2554–2559, 2005.
[82]  M. van de Wetering, N. Barker, I. C. Harkes et al., “Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling,” Cancer Research, vol. 61, no. 1, pp. 278–284, 2001.
[83]  COSMIC Database, http://www.sanger.ac.uk/genetics/CGP/cosmic.
[84]  E. Charafe-Jauffret, C. Ginestier, F. Iovino et al., “Breast cancer cell lines contain functional cancer stem sells with metastatic capacity and a distinct molecular signature,” Cancer Research, vol. 69, no. 4, pp. 1302–1313, 2009.
[85]  S. Y. Park, H. E. Lee, H. Li, M. Shipitsin, R. Gelman, and K. Polyak, “Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer,” Clinical Cancer Research, vol. 16, no. 3, pp. 876–887, 2010.
[86]  K. Polyak, “Heterogeneity in breast cancer,” Journal of Clinical Investigation, vol. 121, no. 10, pp. 2786–3788, 2011.
[87]  H. Nakshatri, E. F. Srour, and S. Badve, “Breast cancer stem cells and intrinsic subtypes: controversies rage on,” Current Stem Cell Research and Therapy, vol. 4, no. 1, pp. 50–60, 2009.
[88]  H. Ponta, L. Sherman, and P. A. Herrlich, “CD44: from adhesion molecules to signalling regulators,” Nature Reviews Molecular Cell Biology, vol. 4, no. 1, pp. 33–45, 2003.
[89]  A. Giatromanolaki, E. Sivridis, A. Fiska, and M. I. Koukourakis, “The CD44+/CD24- phenotype relates to “triple-negative” state and unfavorable prognosis in breast cancer patients,” Medical Oncology, vol. 28, no. 3, pp. 745–752, 2011.
[90]  H. J. Lee, G. Choe, S. Jheon, S. W. Sung, C. T. Lee, and J. H. Chung, “CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (Seventh) New TNM classification,” Journal of Thoracic Oncology, vol. 5, no. 5, pp. 649–657, 2010.
[91]  L. Zhou, Y. Jiang, T. Yan et al., “The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures,” Breast Cancer Research and Treatment, vol. 122, no. 3, pp. 795–801, 2010.
[92]  H. Du, L. Wang, J. He, et al., “CD44 is of functional importance for colorectal cancer stem cells,” Clinical Cancer Research, vol. 14, pp. 6751–6760, 2008.
[93]  S. Ricardo, A. F. Vieira, R. Gerhard, R. D, et al., “Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype,” Journal of Clinical Pathology, vol. 64, pp. 937–946, 2011.
[94]  L. L. C. Marotta, V. Almendro, A. Marusyk et al., “The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2723–2735, 2011.
[95]  P. B. Gupta, C. M. Fillmore, G. Jiang, et al., “Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells,” Cell, vol. 146, pp. 633–644, 2011.
[96]  T.A. Proia, P. J. Keller, P. B. Gupta, et al., “Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate,” Cancer Stem Cell, vol. 8, pp. 149–163, 2011.
[97]  B. Schoeberl, A. C. Faber, D. Li, et al., “An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation,” Cancer Research, vol. 70, no. 6, pp. 2485–2494, 2010.
[98]  P. LoRusso, “A phase I dose-escalation study of safety, pharmacokinetics and pharmacodynamics of XL765, a p13K/TORC1/TORC1 inhibitor administered orally to patients) with advanced solid tumors,” Journal of Clinical Oncology, vol. 25, supplement 15, p. 3502, 2009.
[99]  J. Baselga, “Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer,” The Oncologist, vol. 16, pp. 12–19, 2011.
[100]  Merrimack, “Trial of exemestane +/- MM-121 in postmenopausal women with locally advanced or metastatic estrogen receptor positive and/or progesterone receptor positive her2 negative breast cancer,” NIH Web site, 2011, http://clinicaltrials.gov/ct2/show/results/NCT01151046.
[101]  M. J. Higgins and J. Baselga, “Targeted therapies for breast cancer,” The Journal of Clinical Investigation, vol. 121, no. 10, pp. 3797–3803, 2011.
[102]  I. E. Krop, M. Beeram, S. Modi et al., “Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 16, pp. 2698–2704, 2010.
[103]  H. A. Burris, H. S. Rugo, S. J. Vukelja et al., “Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2) -positive breast cancer after prior HER2-directed therapy,” Journal of Clinical Oncology, vol. 29, no. 4, pp. 398–405, 2011.
[104]  G. Schaefer, L. Haber, L. M. Crocker, et al., “A Two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies,” Cell, vol. 20, no. 4, pp. 472–486, 2011.
[105]  W. J. Irvin Jr. and L. A. Carey, “What is triple-negative breast cancer?” European Journal of Cancer, vol. 44, no. 18, pp. 2799–2805, 2008.
[106]  J. D. Iglehart and D. P. Silver, “Synthetic lethality—a new direction in cancer-drug development,” The New England Journal of Medicine, vol. 361, no. 2, pp. 189–191, 2009.
[107]  A. Tutt, M. Robson, J. E. Garber, et al., “Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial,” Breast Diseases, vol. 22, no. 2, pp. 180–181, 2011.
[108]  J. O'Shaughnessy, C. Osborne, J. E. Pippen et al., “Iniparib plus chemotherapy in metastatic triple-negative breast cancer,” The New England Journal of Medicine, vol. 364, no. 3, pp. 205–214, 2011.
[109]  Hoosier Oncology Group, “PARP inhibition for triple negative breast cancer (ER-/PR-/HER2-) with BRCA1/2 mutations,” NIH Web site, 2012, http://clinicaltrials.gov/ct2/show/NCT01074970.
[110]  H. Lee Moffitt and Cancer Center and Research Institute, “Study of Ad.p53 DC Vaccine and 1-MT in Metastatic Invasive Breast Cancer,” 2012, http://clinicaltrials.gov/ct2/show/NCT01042535.
[111]  The Cancer Genome Atlas Network, “Comprehensive molecular portraits of human breast tumours,” Nature, vol. 490, pp. 61–70, 2012.
[112]  H. Kennecke, R. Yerushalmi, R. Woods et al., “Metastatic behavior of breast cancer subtypes,” Journal of Clinical Oncology, vol. 28, no. 20, pp. 3271–3277, 2010.
[113]  Breast Cancer Trials, https://www.breastcancertrials.org.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133