Studies have shown inconsistent results regarding the association between dietary factors across the lifespan and breast density and breast cancer in women. Breast density is a strong risk factor for breast cancer, and the mechanism through which it influences cancer risk remains unclear. Breast density has been shown to be modifiable, potentially through dietary modifications. The goal of this paper is to summarize the current studies on diet and diet-related factors across all ages, determine which dietary factors show the strongest association with breast density, the most critical age of exposure, and identify future directions. We identified 28 studies, many of which are cross-sectional, and found that the strongest associations are among vitamin D, calcium, dietary fat, and alcohol in premenopausal women. Longitudinal studies with repeated dietary measures as well as the examination of overall diet over time are needed to confirm these findings. 1. Introduction Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer death among women [1]. Alcohol consumption, physical activity, elevated after menopausal body mass index (BMI) [2], age at menarche and menopause [3], and family history and genetic mutations [4] are a few of the well-established BC risk factors. In addition, breast density (BD), or the amount of dense fibroglandular tissue present in the breast, has been related to BC risk; women who have breast densities of 75% or more have up to a 4-5-fold increase in BC risk [5]. Consequently, BD is often thought of as an intermediate on the BC development continuum that can be measured, assessed, and targeted for potential cancer prevention strategies [5–8]. Even so, little is known about the mechanism through which BD may affect breast cancer risk [9]. Breast tissue develops mostly during puberty and continues to undergo changes throughout several life stage events, such as pregnancy [3, 10, 11]. This paper will examine research on diet and diet-related factors captured across the lifespan and the association with adult BD. 2. Methods A literature search of the PubMed database of the United States National Library of Medicine was conducted to find human studies that evaluated the associations between BD measures and diet isn the form of either single nutrients or whole dietary patterns. Both observational and diet intervention studies conducted at any stage of the lifespan were considered. Observational studies were included if they had recorded individual’s dietary intake of foods or energy with dietary
References
[1]
C. DeSantis, R. Siegel, P. Bandi, et al., “Breast cancer statistics,” CA—A Cancer Journal for Clinicians, vol. 61, no. 6, pp. 409–418, 2011.
[2]
WCRF/AICR, Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective, WCRF/AICR, Washington, DC, USA, 2007.
[3]
G. A. Colditz and A. L. Frazier, “Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 5, pp. 567–571, 1995.
[4]
American Cancer Society, 2012, http://www.cancer.org.
[5]
N. F. Boyd, J. M. Rommens, K. Vogt et al., “Mammographic breast density as an intermediate phenotype for breast cancer,” The Lancet Oncology, vol. 6, no. 10, pp. 798–808, 2005.
[6]
J. Brisson, B. Brisson, G. Cote, E. Maunsell, S. Berube, and J. Robert, “Tamoxifen and mammographic breast densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 9, pp. 911–915, 2000.
[7]
M. Freedman, J. San Martin, J. O'Gorman et al., “Digitized mammography: a clinical trial of postmenopausal women randomly assigned to receive raloxifene, estrogen, or placebo,” Journal of the National Cancer Institute, vol. 93, no. 1, pp. 51–56, 2001.
[8]
G. A. Greendale, B. A. Reboussin, S. Slone, C. Wasilauskas, M. C. Pike, and G. Ursin, “Postmenopausal hormone therapy and change in mammographic density,” Journal of the National Cancer Institute, vol. 95, no. 1, pp. 30–37, 2003.
[9]
C. M. Vachon, C. C. Kuni, K. Anderson, V. E. Anderson, and T. A. Sellers, “Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States),” Cancer Causes and Control, vol. 11, no. 7, pp. 653–662, 2000.
[10]
V. Lope, B. Perez-Gomez, C. Sanchez-Contador, et al., “Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain),” Breast Cancer Research and Treatment, vol. 132, no. 3, pp. 1137–1146, 2012.
[11]
L. M. Butler, E. B. Gold, G. A. Greendale et al., “Menstrual and reproductive factors in relation to mammographic density: the Study of Women's Health Across the Nation (SWAN),” Breast Cancer Research and Treatment, vol. 112, no. 1, pp. 165–174, 2008.
[12]
G. Haars, C. H. Van Gils, S. G. Elias, M. TteLokate, P. A. H. Van Noord, and P. H. M. Peeters, “The influence of a period of caloric restriction due to the Dutch Famine on breast density,” International Journal of Cancer, vol. 126, no. 9, pp. 2211–2215, 2010.
[13]
G. D. Mishra, I. Dos Santos Silva, S. A. McNaughton, A. Stephen, and D. Kuh, “Energy intake and dietary patterns in childhood and throughout adulthood and mammographic density: results from a British prospective cohort,” Cancer Causes and Control, vol. 22, no. 2, pp. 227–235, 2011.
[14]
G. Mishra, V. McCormack, D. Kuh, R. Hardy, A. Stephen, and I. Dos Santos Silva, “Dietary calcium and vitamin D intakes in childhood and throughout adulthood and mammographic density in a British birth cohort,” British Journal of Cancer, vol. 99, no. 9, pp. 1539–1543, 2008.
[15]
T. A. Sellers, C. M. Vachon, V. S. Pankratz et al., “Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density,” American Journal of Epidemiology, vol. 166, no. 4, pp. 456–464, 2007.
[16]
M. Tseng, T. O. Olufade, K. A. Evers, and C. Byrne, “Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women,” Nutrition and Cancer, vol. 63, no. 3, pp. 342–349, 2011.
[17]
C. M. Vachon, T. A. Sellers, C. A. Janney et al., “Alcohol intake in adolescence and mammographic density,” International Journal of Cancer, vol. 117, no. 5, pp. 837–841, 2005.
[18]
J. F. Dorgan, L. Liu, C. Klifa et al., “Adolescent diet and subsequent serum hormones, breast density, and bone mineral density in young women: results of the dietary intervention study in children follow-up study,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 6, pp. 1545–1556, 2010.
[19]
E. R. Bertone-Johnson, R. T. Chlebowski, J. E. Manson et al., “Dietary vitamin D and calcium intake and mammographic density in postmenopausal women,” Menopause, vol. 17, no. 6, pp. 1152–1160, 2010.
[20]
E. R. Bertone-Johnson, A. McTiernan, C. A. Thomson, et al., “Vitamin D and calcium supplementation and one-year change in mammographic density in the women's health initiative calcium and vitamin D trial,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 3, pp. 462–473, 2012.
[21]
S. Bérubé, C. Diorio, B. Masse et al., “Vitamin D and calcium intakes from food or supplements and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 7, pp. 1653–1659, 2005.
[22]
S. Bérubé, C. Diorio, W. Verhoek-Oftedahl, and J. Brisson, “Vitamin D, calcium, and mammographic breast densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 9, pp. 1466–1472, 2004.
[23]
C. Diorio, S. Bérubé, C. Byrne et al., “Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density,” Cancer Research, vol. 66, no. 1, pp. 588–597, 2006.
[24]
G. Masala, D. Ambrogetti, M. Assedi, D. Giorgi, M. R. Del Turco, and D. Palli, “Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population,” International Journal of Cancer, vol. 118, no. 7, pp. 1782–1789, 2006.
[25]
E. Nordevang, E. Azavedo, G. Svane, B. Nilsson, and L. E. Holm, “Dietary habits and mammographic patterns in patients with breast cancer,” Breast Cancer Research and Treatment, vol. 26, no. 3, pp. 207–215, 1993.
[26]
J. A. Knight, C. M. Vachon, R. A. Vierkant, R. Vieth, J. R. Cerhan, and T. A. Sellers, “No association between 25-hydroxyvitamin D and mammographic density,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1988–1992, 2006.
[27]
M. Tseng, C. Byrne, K. A. Evers, and M. B. Daly, “Dietary intake and breast density in high-risk women: a cross-sectional study,” Breast Cancer Research, vol. 9, no. 5, article R72, 2007.
[28]
G. Maskarinec, Y. Takata, I. Pagano, G. Lurie, L. R. Wilkens, and L. N. Kolonel, “Alcohol consumption and mammographic density in a multiethnic population,” International Journal of Cancer, vol. 118, no. 10, pp. 2579–2583, 2006.
[29]
E. Sala, R. Warren, S. Duffy, A. Welch, R. Luben, and N. Day, “High risk mammographic parenchymal patterns and diet: a case-control study,” British Journal of Cancer, vol. 83, no. 1, pp. 121–126, 2000.
[30]
J. Brisson, R. Verreault, A. S. Morrison, S. Tennina, and F. Meyer, “Diet, mammographic features of breast tissue, and breast cancer risk,” American Journal of Epidemiology, vol. 130, no. 1, pp. 14–24, 1989.
[31]
C. Nagata, T. Matsubara, H. Fujita et al., “Associations of mammographic density with dietary factors in Japanese women,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2877–2880, 2005.
[32]
S. A. Qureshi, E. Couto, M. Hilsen, et al., “Mammographic density and intake of selected nutrients and vitamins in Norwegian women,” Nutrition and Cancer, vol. 63, no. 7, pp. 1011–1020, 2011.
[33]
M. Tseng, R. A. Vierkant, L. H. Kushi, T. A. Sellers, and C. M. Vachon, “Dietary patterns and breast density in the Minnesota Breast Cancer Family Study,” Cancer Causes and Control, vol. 19, no. 5, pp. 481–489, 2008.
[34]
S. Bérubé, C. Diorio, and J. Brisson, “Multivitamin-multimineral supplement use and mammographic breast density,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1400–1404, 2008.
[35]
N. F. Boyd, C. Greenberg, G. Lockwood et al., “Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial,” Journal of the National Cancer Institute, vol. 89, no. 7, pp. 488–496, 1997.
[36]
L. J. Martin, C. V. Greenberg, V. Kriukov et al., “Effect of a low-fat, high-carbohydrate dietary intervention on change in mammographic density over menopause,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 163–172, 2009.
[37]
J. A. Knight, L. J. Martin, C. V. Greenberg et al., “Macronutrient intake and change in mammographic density at menopause: results from a randomized trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 2, pp. 123–128, 1999.
[38]
C. Klifa, J. Carballido-Gamio, L. Wilmes et al., “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magnetic Resonance Imaging, vol. 28, no. 1, pp. 8–15, 2010.
[39]
C. Balleyguier, S. Ayadi, K. Van Nguyen, D. Vanel, C. Dromain, and R. Sigal, “BIRADS classification in mammography,” European Journal of Radiology, vol. 61, no. 2, pp. 192–194, 2007.
[40]
J. N. Wolfe, “Breast patterns as an index of risk for developing breast cancer,” American Journal of Roentgenology, vol. 126, no. 6, pp. 1130–1137, 1976.
[41]
I. T. Gram, E. Funkhouser, and L. Tabár, “The Tabar classification of mammographic parenchymal patterns,” European Journal of Radiology, vol. 24, no. 2, pp. 131–136, 1997.
[42]
J. W. Byng, M. J. Yaffe, R. A. Jong et al., “Analysis of mammographic density and breast cancer risk from digitized mammograms,” Radiographics, vol. 18, no. 6, pp. 1587–1598, 1998.
[43]
C. M. Rutter, M. T. Mandelson, M. B. Laya, S. Taplin, and Seger, “Changes in breast density associated with initiation, discontinuation, and continuing use of hormone replacement therapy,” JAMA, vol. 285, no. 2, pp. 171–176, 2001.
[44]
J. Stone, R. M. L. Warren, E. Pinney, J. Warwick, and J. Cuzick, “Determinants of percentage and area measures of mammographic density,” American Journal of Epidemiology, vol. 170, no. 12, pp. 1571–1578, 2009.
[45]
N. F. Boyd, G. S. Dite, J. Stone et al., “Heritability of mammographic density, a risk factor for breast cancer,” The New England Journal of Medicine, vol. 347, no. 12, pp. 886–894, 2002.
[46]
E. H. Ruder, J. F. Dorgan, S. Kranz, P. M. Kris-Etherton, and T. J. Hartman, “Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence,” Clinical Breast Cancer, vol. 8, no. 4, pp. 334–342, 2008.
[47]
J. R. Cerhan, T. A. Sellers, C. A. Janney, V. S. Pankratz, K. R. Brandt, and C. M. Vachon, “Prenatal and perinatal correlates of adult mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 6, pp. 1502–1508, 2005.
[48]
W. C. Willett, Nutritional Epidemiology, Oxford University Press, New York, NY, USA, 2nd edition, 1998.
[49]
P. A. H. Van Noord, “Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch Famine of 1944-1945 on breast cancer and its risk factors,” Journal of Nutrition, vol. 134, no. 12, supplement, pp. 3399S–3406S, 2004.
[50]
C. Diorio, M. Pollak, C. Byrne et al., “Insulin-like growth factor-I, IGF-binding protein-3, and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 5, pp. 1065–1073, 2005.
[51]
C. M. Vachon, L. H. Kushi, J. R. Cerhan, C. C. Kuni, and T. A. Sellers, “Association of diet and mammographic breast density in the Minnesota breast cancer family cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 2, pp. 151–160, 2000.
[52]
K. W. Singletary and S. M. Gapstur, “Alcohol and breast cancer: review of epidemiologic and experimental evidence and potential mechanisms,” JAMA, vol. 286, no. 17, pp. 2143–2151, 2001.
[53]
R. G. Dumitrescu and P. G. Shields, “The etiology of alcohol-induced breast cancer,” Alcohol, vol. 35, no. 3, pp. 213–225, 2005.
[54]
A. Vrieling, D. W. Voskuil, H. B. B. D. Mesquita et al., “Dietary determinants of circulating insulin-like growth factor (IGF)-I and IGF binding proteins 1, -2 and -3 in women in the Netherlands,” Cancer Causes and Control, vol. 15, no. 8, pp. 787–796, 2004.
[55]
G. Maskarinec, M. Verheus, and J. A. Tice, “Epidemiologic studies of isoflavones & mammographic density,” Nutrients, vol. 2, no. 1, pp. 35–48, 2010.
[56]
M. Lipkin and H. L. Newmark, “Vitamin D, calcium and prevention of breast cancer: a review,” Journal of the American College of Nutrition, vol. 18, no. 5, supplement, pp. 392S–397S, 1999.
[57]
J. Welsh, “Targets of vitamin D receptor signaling in the mammary gland,” Journal of Bone and Mineral Research, vol. 22, no. 2, pp. V86–V90, 2007.
[58]
J. Cuzick, J. Warwick, E. Pinney, R. M. L. Warren, and S. W. Duffy, “Tamoxifen and breast density in women at increased risk of breast cancer,” Journal of the National Cancer Institute, vol. 96, no. 8, pp. 621–628, 2004.
[59]
J. Brisson, S. Bérubé, C. Diorio, M. Sinotte, M. Pollak, and B. Masse, “Synchronized seasonal variations of mammographic breast density and plasma 25-hydroxyvitamin D,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 5, pp. 929–933, 2007.
[60]
M. F. Holick, “Vitamin D: its role in cancer prevention and treatment,” Progress in Biophysics and Molecular Biology, vol. 92, no. 1, pp. 49–59, 2006.
[61]
C. Byrne, G. A. Colditz, W. C. Willet, F. E. Speizer, M. Pollak, and S. E. Hankinson, “Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density,” Cancer Research, vol. 60, no. 14, pp. 3744–3748, 2000.
[62]
J. A. Harvey and V. E. Bovbjerg, “Quantitative assessment of mammographic breast density: relationship with breast cancer risk,” Radiology, vol. 230, no. 1, pp. 29–41, 2004.
[63]
N. F. Boyd, P. Connelly, J. Byng et al., “Plasma lipids, lipoproteins, and mammographic densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 7, pp. 727–733, 1995.
[64]
F. B. Hu, “Dietary pattern analysis: a new direction in nutritional epidemiology,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 3–9, 2002.
[65]
L. M. Butler, E. B. Gold, S. M. Conroy et al., “Active, but not passive cigarette smoking was inversely associated with mammographic density,” Cancer Causes and Control, vol. 21, no. 2, pp. 301–311, 2010.
[66]
M. Tseng, T. A. Sellers, R. A. Vierkant, L. H. Kushi, and C. M. Vachon, “Mediterranean diet and breast density in the Minnesota breast cancer family study,” Nutrition and Cancer, vol. 60, no. 6, pp. 703–709, 2008.
[67]
L. Hooper, G. Madhavan, J. A. Tice, S. J. Leinster, and A. Cassidy, “Effects of isoflavones on breast density in pre-and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials,” Human Reproduction Update, vol. 16, no. 6, Article ID dmq011, pp. 745–760, 2010.
[68]
S. Chan, M. Y. Su, F. J. Lei, et al., “Menstrual cycle-related fluctuations in breast density measured by using three-dimensional MR imaging,” Radiology, vol. 261, no. 3, pp. 744–751, 2011.
[69]
E. White, P. Velentgas, M. T. Mandelson et al., “Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 906–910, 1998.
[70]
M. Morrow, R. T. Chatterton Jr., A. W. Rademaker et al., “A prospective study of variability in mammographic density during the menstrual cycle,” Breast Cancer Research and Treatment, vol. 121, no. 3, pp. 565–574, 2010.
[71]
D. S. M. Buist, E. J. Aiello, D. L. Miglioretti, and E. White, “Mammographic breast density, dense area, and breast area differences by phase in the menstrual cycle,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2303–2306, 2006.