全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Mammary Gland Carcinogens: The Role of Metal Compounds and Organic Solvents

DOI: 10.1155/2013/640851

Full-Text   Cite this paper   Add to My Lib

Abstract:

The increased rate of breast cancer incidences especially among postmenopausal women has been reported in recent decades. Despite the fact that women who inherited mutations in the BRCA1 and BRCA2 genes have a high risk of developing breast cancer, studies have also shown that significant exposure to certain metal compounds and organic solvents also increases the risks of mammary gland carcinogenesis. While physiological properties govern the uptake, intracellular distribution, and binding of metal compounds, their interaction with proteins seems to be the most relevant process for metal carcinogenicity than biding to DNA. The four most predominant mechanisms for metal carcinogenicity include (1) interference with cellular redox regulation and induction of oxidative stress, (2) inhibition of major DNA repair, (3) deregulation of cell proliferation, and (4) epigenetic inactivation of genes by DNA hypermethylation. On the other hand, most organic solvents are highly lipophilic and are biotransformed mainly in the liver and the kidney through a series of oxidative and reductive reactions, some of which result in bioactivation. The breast physiology, notably the parenchyma, is embedded in a fat depot capable of storing lipophilic xenobiotics. This paper reviews the role of metal compounds and organic solvents in breast cancer development. 1. Introduction Breast cancer accounts for 16% of all cancer deaths among women globally, according to the report by the World Health Organization [1]. It is the most common solid tumor diagnosed in women [2] and there is also an increasing trend in men. Even though some women are genetically predisposed by inheriting the BRCA1 and BRCA2 genes, studies show that an elevated lifetime of estrogen exposure is also another risk factor for breast cancer [3]. The ability of estrogen and estrogen metabolites to generate oxygen reaction species (ROS) which can induce DNA synthesis, increase phosphorylation of protein kinases, and activate transcription factors like AP-1, NRF1, E2F, and CREB which are found to be responsive to oxidants (including solvent toxins and metal compounds) embodies the basis of carcinogenesis by estrogen [4]. Whereas the activation of transcription factors plays a vital role in cell transformation, cell cycle, migration, and invasion, and it increases the genetic instability [5]. Occupational and environmental exposure to metal compounds and organic solvents have contributed to increasing breast cancer cases in the recent decades especially as many women have entered work places since 1960s [6]. It has

References

[1]  World Health Organization F.S., 2011, http://www.who.int/mediacentre/factsheets/fs297/en/index.html.
[2]  C. M. Gallagher, J. J. Chen, and J. S. Kovach, “Environmental cadmium and breast cancer risk,” Aging, vol. 2, no. 11, pp. 804–814, 2010.
[3]  O. I. Alatise and G. N. Schrauzer, “Lead exposure: a contributing cause of the current breast cancer epidemic in Nigerian Women,” Biological Trace Element Research, vol. 136, no. 2, pp. 127–139, 2010.
[4]  A. Florea and D. Büsselberg, “Metals and breast cancer: risk factors or healing agents?” Journal of Toxicology, vol. 2011, Article ID 159619, 8 pages, 2011.
[5]  V. Okoh, A. Deoraj, and D. Roy, “Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer,” Biochimica et Biophysica Acta, vol. 1815, no. 1, pp. 115–133, 2011.
[6]  Statistics Canada, Women in Canada: A statistical Report, Catalogue no. 89-503E, Ministry of Supply and Services Canada, Ottawa, Canada, 2nd edition, 1990.
[7]  C. L. Siewit, B. Gengler, E. Vegas, R. Puckett, and M. C. Louie, “Cadmium promotes breast cancer cell proliferation by potentiating the interaction between ERα and c-Jun,” Molecular Endocrinology, vol. 24, no. 5, pp. 981–992, 2010.
[8]  Z. Fernandez, C. E. Snider, Y. Z. Wu, I. H. Russo, C. Plass, and J. Russo, “DNA methylation changes in a human cell model of breast cancer progression,” Mutation Research, vol. 688, no. 1-2, pp. 28–35, 2010.
[9]  P. Qui and L. Zhang, “Identification of markers associated with global changes in DNA methylation regulation in cancers,” BMC Bioinformatics, vol. 13, supplement 13, article S7, 2012.
[10]  D. Beyersmann and A. Hartwig, “Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms,” Archives of Toxicology, vol. 82, no. 8, pp. 493–512, 2008.
[11]  L. S. Andrews and R. Snyder, “Toxic effects of solvents and vapors,” in The Basic Science of Poisons, M. O. Amdur, J. Doull, and C. D. Claassen, Eds., pp. 681–722, McGraw-Hill, Toronto, Canada, 1991.
[12]  J. J. Morris and E. Seifter, “The role of aromatic hydrocarbons in the genesis of breast cancer,” Medical Hypotheses, vol. 38, no. 3, pp. 177–184, 1992.
[13]  J. G. Brody, K. B. Moysich, O. Humblet, K. R. Attfield, G. P. Beehler, and R. A. Rudel, “Environmental pollutants and breast cancer: epidemiologic studies,” Cancer, vol. 109, supplement 12, pp. 2667–2711, 2007.
[14]  F. P. Lambreche and M. S. Goldberg, “Exposure to organic solvents and breast cancer in women: a hypothesis,” American Journal of Industrial Medicine, vol. 32, pp. 1–14, 1997.
[15]  J. Hansen, “Breast cancer risks among relatively young women employed in solvent-using industries,” American Journal of Industrial Medicine, vol. 36, no. 1, pp. 43–47, 1999.
[16]  P. R. Band, N. D. Le, R. Fang, M. Deschamps, R. P. Gallagher, and P. Yang, “Identification of occupational cancer risks in British Columbia: a population-based case-control study of 995 incident breast cancer cases by menopausal status, controlling for confounding factors,” Journal of Occupational and Environmental Medicine, vol. 42, no. 3, pp. 284–310, 2000.
[17]  D. C. Malins, E. H. Holmes, N. L. Polissar, and S. J. Gunselman, “The etiology of breast cancer: characteristic alterations in hydroxyl radical-induced DNA base lesions during oncogenesis with potential for evaluating incidence risk,” Cancer, vol. 71, no. 10, pp. 3036–3043, 1993.
[18]  J. W. Berg and R. V. P. Hutter, “Breast cancer,” Cancer, vol. 75, no. 1, pp. 257–269, 1995.
[19]  N. L. Petrakis, “Breast secretory activity in nonlactating women, postpartum breast involution, and the epidemiology of breast cancer,” National Cancer Institute Monograph, vol. 47, pp. 161–164, 1977.
[20]  N. L. Petrakis, M. E. Dupuy, R. E. Lee et al., “Mutagens in nipple aspirates of breast fluid,” in Banbury Report 13: Indicators of Genotoxic Exposure, pp. 67–82, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA, 1982.
[21]  D. Beyersmann, “Physiochemical aspect of the interference of detrimental metal ions with normal metal metabolism,” in Handbook on Metal Ligand Interactions in Biological Fluids, G. Merthon, Ed., pp. 813–826, Marcel Dekker, New York, NY, USA, 1995.
[22]  A. Hartwig, “Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function,” Antioxidants and Redox Signaling, vol. 3, no. 4, pp. 625–634, 2001.
[23]  E. D. Pellizzari, T. D. Hartwell, B. S. H. Haris III, R. D. Waddell, D. A. Whitaker, and M. D. Erickson, “Purgeable organic compounds in mother’s milk,” Bulletin of Environmental Contamination and Toxicology, vol. 28, no. 3, pp. 322–328, 1982.
[24]  M. S. Wolff, “Ooccupationally derived chemicals in breast milk,” American Journal of Industrial Medicine, vol. 4, pp. 259–281, 1983.
[25]  A. A. Jensen, “Occupational chemicals in human milk,” in Chemical Contaminants in Human Milk, A. A. Jensen and S. A. Slorach, Eds., pp. 209–214, CRC Press, Boca Raton, Fla, USA, 1991.
[26]  M. Yaman, “Comprehensive comparison of trace metal concentrations in cancerous and non-cancerous human tissues,” Current Medicinal Chemistry, vol. 13, no. 21, pp. 2513–2525, 2006.
[27]  M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005.
[28]  A. Anil, K. Puneet, and K. B. Dalim, “Trace elements in critical illness,” The Journal of Clinical Endocrinology & Metabolism, vol. 1, no. 2, pp. 57–63, 2011.
[29]  M. N. Martin, “DNA repair inhibition and cancer therapy,” Journal of Photochemistry and Photobiology B, vol. 63, no. 1–3, pp. 162–170, 2001.
[30]  N. Harrison, “Inorganic contaminants in food,” in Food Chemical Safety Contaminants, D. H. Watson, Ed., pp. 148–168, Woodhead Publishing Ltd, Cambridge, Mass, USA, 1st edition, 2001.
[31]  P. Calsou, P. Frit, C. Bozzato, and B. Salles, “Negative interference of metal (II) ions with nucleotide excision repair in human cell-free extracts,” Carcinogenesis, vol. 17, no. 12, pp. 2779–2782, 1996.
[32]  T. Hirano, Y. Yamaguchi, and H. Kasai, “Inhibition of 8-hydroxyguanine repair in testes after administration of cadmium chloride to GSH-depleted rats,” Toxicology and Applied Pharmacology, vol. 147, no. 1, pp. 9–14, 1997.
[33]  K. Takahashi, M. Suzuki, M. Sekiguchi, and Y. Kawazoe, “Effect of metal ions on transcription of the ada gene which encodes O6-methylguanine-DNA methyltransferase of Escherichia coli,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 9, pp. 2483–2486, 1992.
[34]  A. Hartwig and D. Beyersmann, “Enhancement of UV-induced mutagenesis and sites-chromatid exchanges by nickel ions in V79 cells: evidence for inhibition of DNA repair,” Mutation Research, vol. 217, no. 1, pp. 65–73, 1989.
[35]  C. N. Sawyer, P. L. McCarty, and G. F. Parkin, Chemistry for Environmental and Engineering Sciences, Mc Graw Hill, New York, NY, USA, 5th edition, 2003.
[36]  International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Arsenic in Drinking Water, vol. 84-6A, IARC, Lyon, France, 2004.
[37]  International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 1–58, IARC, Lyon, France, 1993.
[38]  R. Ruiz-Ramos, L. Lopez-Carrillo, A. D. Rios-Perez, A. de Vizcaya-Ruíz, and M. E. Cebrian, “Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-κB activation and cell proliferation in human breast cancer MCF-7 cells,” Mutation Research, vol. 674, no. 1-2, pp. 109–115, 2009.
[39]  X. Wang, P. Gao, M. Long et al., “Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide,” Medical Oncology, vol. 28, no. 4, pp. 1225–1254, 2011.
[40]  S. Ying, K. Myers, S. Bottomley, T. Helleday, and H. E. Bryant, “BRCA2-dependent homologous recombination is required for repair of Arsenite-induced replication lesions in mammalian cells,” Nucleic Acids Research, vol. 37, no. 15, pp. 5105–5113, 2009.
[41]  Y. Ming-Ho, Environmental Toxicology: Biological and Health Effects of Pollutants, chapter 12, CRC Press LLC, Boca Raton, Fla, USA, 2nd edition, 2005.
[42]  E. Figueroa, “Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health,” Science of the Total Environment, vol. 389, no. 1, pp. 1–9, 2008.
[43]  M. I. Castro-Gonzalez and M. Mendez-Armenia, “Heavy metals: implications associated to fish consumption,” Environmental Toxicology and Pharmacology, vol. 26, pp. 263–271, 2008.
[44]  World Health Oorganization (WHO), Evaluation of Certain Food Contaminants. Sixty-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives, Technical Report Series, no. 922, WHO, 2006.
[45]  L. Benbrahim-Tallaa, E. J. Tokar, B. A. Diwan, A. L. Dill, J. F. Coppin, and M. P. Waalkes, “Cadmium malignantly transforms normal human breast epithelial cells into a basal-like phenotype,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1847–1852, 2009.
[46]  C. Martínez-Campa, C. Alonso-González, M. D. Mediavilla, et al., “Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium,” Journal of Pineal Research, vol. 40, no. 4, pp. 307–319, 2006.
[47]  G. N. Schrauzer, “Interactive effects of selenium and cadmium on mammary tumor development and growth in MMTV-Infected female mice. A model study on the roles of cadmium and selenium in human breast cancer,” Biological Trace Element Research, vol. 123, no. 1–3, pp. 27–34, 2008.
[48]  X. Yu, E. J. Filardo, and Z. A. Shaikh, “The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells,” Toxicology and Applied Pharmacology, vol. 245, no. 1, pp. 83–90, 2010.
[49]  M. Brama, L. Gnessi, S. Basciani et al., “Cadmium induces mitogenic signaling in breast cancer cell by an ERα-dependent mechanism,” Molecular and Cellular Endocrinology, vol. 264, no. 1-2, pp. 102–108, 2007.
[50]  S. Pacini, T. Punzi, G. Morucci, M. Gulisano, and M. Ruggiero, “A paradox of cadmium: a carcinogen that impairs the capability of human breast cancer cells to induce angiogenesis,” Journal of Environmental Pathology, Toxicology and Oncology, vol. 28, no. 1, pp. 85–88, 2009.
[51]  A. Hartwig, R. D. Snyder, R. Schlepegrell, and D. Beyersmann, “Modulation by Co(II) of UV-induced DNA repair, mutagenesis and sister-chromatid exchanges in mammalian cells,” Mutation Research, vol. 248, no. 1, pp. 177–185, 1991.
[52]  J. R. Landolph, “Molecular mechanisms of transformation of C3H/10T1/2 C1 8 mouse embryo cells and diploid human fibroblasts by carcinogenic metal compounds,” Environmental Health Perspectives, vol. 102, no. 3, pp. 119–125, 1994.
[53]  B. Quintillina-Vega, D. J. Hoover, E. K. Silbergeld, M. Waalkes, and L. D. Anderson, “Interaction between lead and protamine 2 from human spermatozoa,” in Proceedings of the International Symposium on Environment, Lifestyle and Fertility, Aarhus, Denmark, 1997.
[54]  P. Hainaut and J. Milner, “A structural role for metal ions in the ‘wild-type’ conformation of the tumor suppressor protein p53,” Cancer Research, vol. 53, no. 8, pp. 1739–1742, 1993.
[55]  D. R. McNeill, H. K. Wong, A. Narayana, and D. M. Wilson, “Lead promotes abasic site accumulation and co-mutagenesis in mammalian cells by inhibiting the major abasic endonuclease Ape1,” Molecular Carcinogenesis, vol. 46, no. 2, pp. 91–99, 2007.
[56]  J. Gastaldo, M. Viau, Z. Bencokova et al., “Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways,” Toxicology Letters, vol. 173, no. 3, pp. 201–214, 2007.
[57]  International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Nickel and Nickel Compounds, vol. 100C, IARC, Lyon, France, 2012.
[58]  J. N. Feder, A. Gnirke, W. Thomas et al., “A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis,” Nature Genetics, vol. 13, no. 4, pp. 399–408, 1996.
[59]  Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead (Update), US Department of Health and Human Services, Atlanta, Ga, USA, 1996.
[60]  S. J. Rothenburg, S. Karchmer, L. Schnaas, E. Perroni, F. Zea, and J. Fernandez Alba, “Changes in serial blood lead levels during pregnancy,” Environmental Health Perspectives, vol. 102, no. 10, pp. 876–880, 1994.
[61]  C. D. Klaassen and K. Rozman, “Absorption, distribution and excreation of toxicants,” in Casarett and Doull’s Toxicology. The Basic Science of Poisons, M. O. Amdur, J. Doull, and C. D. Klaassen, Eds., pp. 50–87, McGraw-Hill, Torornto, Canada, 1991.
[62]  M. B. Martin, R. Reiter, T. Pham et al., “Estrogen-like activity of metals in MCF-7 breast cancer cells,” Endocrinology, vol. 144, no. 6, pp. 2425–2436, 2003.
[63]  J. G. Ionescu, J. Novotny, V. Stejskal, A. L?tsch, E. Blaurock-Busch, and M. Eisenmann-Klein, “Increased levels of transition metals in breast cancer tissue,” Neuroendocrinology Letters, vol. 27, supplement 1, pp. 36–39, 2006.
[64]  M. R. Sim and J. J. McNeil, “Monitoring chemical exposure using breast milk: a methodological review,” American Journal of Epidemiology, vol. 136, no. 1, pp. 1–11, 1992.
[65]  R. A. Rudel, K. R. Attfield, J. N. Schifano, and J. G. Brody, “Chemicals causing mammary gland tumors in animals signal new directions for epidemiology, chemicals testing, and risk assessment for breast cancer prevention,” Cancer, vol. 109, supplement 12, pp. 2635–2666, 2007.
[66]  J. E. Huff, J. K. Haseman, D. M. DeMarini et al., “Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice,” Environmental Health Perspectives, vol. 82, pp. 125–163, 1989.
[67]  C. D. Houle, T. V. Ton, N. Clayton, J. Huff, H. H. Hong, and R. C. Sills, “Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice,” Toxicologic Pathology, vol. 34, no. 6, pp. 752–762, 2006.
[68]  S. A. Petralia, W. H. Chow, J. McLaughlin, F. Jin, Y. T. Gao, and M. Dosemeci, “Occupational risk factors for breast cancer among women in Shanghai,” American Journal of Industrial Medicine, vol. 34, no. 5, pp. 477–483, 1998.
[69]  C. P. Rennix, M. M. Quinn, P. J. Amoroso, E. A. Eisen, and D. H. Wegman, “Risk of breast cancer among enlisted Army women occupationally exposed to volatile organic compounds,” American Journal of Industrial Medicine, vol. 48, no. 3, pp. 157–167, 2005.
[70]  J. Shaham, R. Gurvich, A. Goral, and A. Czerniak, “The risk of breast cancer in relation to health habits and occupational exposures,” American Journal of Industrial Medicine, vol. 49, no. 12, pp. 1021–1030, 2006.
[71]  A. S. Costantini, G. Gorini, D. Consonni, L. Miligi, L. Giovannetti, and M. Quinn, “Exposure to benzene and risk of breast cancer among shoe factory workers in Italy,” Tumori, vol. 95, no. 1, pp. 8–12, 2009.
[72]  Institute for Research and Technical Assistance (IRTA), Methylene Chloride Consumer Product Paint Strippers: Low-VOC, Low Toxicity Alternatives, 2006.
[73]  K. Steenland, E. Whelan, J. Deddens, L. Stayner, and E. Ward, “Ethylene oxide and breast cancer incidence in a cohort study of 7576 women (United States),” Cancer Causes and Control, vol. 14, no. 6, pp. 531–539, 2003.
[74]  B. ádám, H. Bárdos, and R. ádány, “Increased genotoxic susceptibility of breast epithelial cells to ethylene oxide,” Mutation Research, vol. 585, no. 1-2, pp. 120–126, 2005.
[75]  National Toxicology Program (NTP), Report on Carcinogensed, United States Department of Health and Human Services (DHSS), National Toxicology Program, Research Triangle Park, NC, USA, 11th edition, 2005.
[76]  Agency for Toxic Substances and Disease Registry (ATSDR), “Toxicological profile for styrene,” Tech. Rep. TP-91/25, US Department of Health and Human Services, ATSDR, Atlanta, Ga, USA, 1992.
[77]  A. Aschengrau, S. Rogers, and D. Ozonoff, “Perchloroethylene-contaminated drinking water and the risk of breast cancer: additional results from Cape Cod, Massachusetts, USA,” Environmental Health Perspectives, vol. 111, no. 2, pp. 167–173, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133