Background. Lymphedema secondary to breast cancer treatment is a common and serious problem for disease survivors. The objective of the current study was to identify the risk factors of secondary lymphedema after breast carcinoma treatment. Materials & Methods. The breast cancer patients who were followed up in three centers in Tehran and Mashhad in 2010 were recruited in the study. The circumference measurement was used for defining lymphedema. Results. Among 410 breast cancer patients, 123 cases (30%) developed lymphedema. Variables such as low educational level, body mass index (BMI), higher stage of disease, number of involved lymph nodes, comorbid diseases, trauma, infection, and the time after surgery showed significant correlation with the development of lymphedema. In logistic regression analysis, increase of 1?kg/m2 in BMI (OR?=?1.09; 95%??CI 1.05–1.15), each number increase in lymph node involvement (OR?=?1.15; 95%??CI 1.08–1.21) and the increase of every 1 month after surgery (OR?=?1.01; 95%??CI 1.01–1.02) significantly increased the risk of lymphedema. Conclusion. The results of this study demonstrated that preserving a fitted BMI, emphasis on self-care, and educating preventive activities may have important roles in decreasing the lymphedema incidence and improving the patients’ quality of life. 1. Introduction Lymphedema (LE) is an external (or internal) manifestation of lymphatic system insufficiency and impaired lymph transport [1]. It is characterized by accumulation of lymphatic fluid in the interstitial tissue that causes swelling, most often in extremities. The development of LE occurs when the lymphatic load exceeds the transport capacity. There are two general classifications of LE: primary and secondary. Primary LE develops as a consequence of a pathologic congenital and/or hereditary etiology. Secondary LE, which is more common, is caused by mechanical insufficiency of the lymphatic system due to surgery, radiation, chemotherapy, trauma, infection, tumoral blockage, chronic venous insufficiency, immobility, or tourniquet effects [2]. Upper extremity LE is one of the most common complications after breast cancer surgery with a reported incidence of 6% to 30% [3]. It is estimated that 120,000–600,000 patients suffer from postmastectomy lymphedema in the United States [4]. In a meta-analysis of 72 studies achieved by Disipio et al. in 2013, pooled estimate of lymphedema incidence was 16.6% (95% CI 13.6–20.2). It was 21.4% (14.9–29.8) when data were restricted to prospective cohort studies (30 studies) [5]. The occurrence time of
References
[1]
International Society of Lymphology, “The diagnosis and treatment of peripheral lymphedema. 2009 Concensus Document of the International Society of Lymphology,” Lymphology, vol. 42, no. 2, pp. 51–60, 2009.
[2]
B. D. Lawenda, T. E. Mondry, and P. A. S. Johnstone, “Lymphedema: a primer on the identification and management of a chronic condition in oncologic treatment,” CA Cancer Journal for Clinicians, vol. 59, no. 1, pp. 8–24, 2009.
[3]
B. Clark, J. Sitzia, and W. Harlow, “Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study,” QJM, vol. 98, no. 5, pp. 343–348, 2005.
[4]
A. Soran, G. D'Angelo, M. Begovic et al., “Breast cancer-related lymphedema—what are the significant predictors and how they affect the severity of lymphedema?” Breast Journal, vol. 12, no. 6, pp. 536–543, 2006.
[5]
T. Disipio, S. Rye, B. Newman, and S. Hayes, “Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis,” The Lancet Oncology, vol. 14, no. 6, pp. 500–515, 2013.
[6]
E. D. Paskett, M. J. Naughton, T. P. McCoy, L. D. Case, and J. M. Abbott, “The epidemiology of arm and hand swelling in premenopausal breast cancer survivors,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 4, pp. 775–782, 2007.
[7]
A. F. Williams, P. J. Franks, and C. J. Moffatt, “Lymphoedema: estimating the size of the problem,” Palliative Medicine, vol. 19, no. 4, pp. 300–313, 2005.
[8]
J. H. Park, W. H. Lee, and H. S. Chung, “Incidence and risk factors of breast cancer lymphoedema,” Journal of Clinical Nursing, vol. 17, no. 11, pp. 1450–1459, 2008.
[9]
A. Herd-Smith, A. Russo, M. G. Muraca, M. R. Del Turco, and G. Cardona, “Prognostic factors for lymphedema after primary treatment of breast carcinoma,” Cancer, vol. 92, no. 7, pp. 1783–1787, 2001.
[10]
D. Altman, Practical Statistics For Medical Research, Chapman & Hall, London, UK, 1991.
[11]
J. A. Petrek, R. T. Senie, M. Peters, and P. P. Rosen, “Lymphedema in a cohort of breast carcinoma survivors 20 years after diagnosis,” Cancer, vol. 92, no. 6, pp. 1368–1377, 2001.
[12]
S. Hayes, B. Cornish, and B. Newman, “Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up,” Breast Cancer Research and Treatment, vol. 89, no. 3, pp. 221–226, 2005.
[13]
S. V. S. Deo, S. Ray, G. K. Rath et al., “Prevalence and risk factors for development of lymphedema following breast cancer treatment,” Indian Journal of Cancer, vol. 41, no. 1, pp. 8–12, 2004.
[14]
J. Engel, J. Kerr, A. Schlesinger-Raab, H. Sauer, and D. H?lzel, “Axilla surgery severely affects quality of life: results of a 5-year prospective study in breast cancer patients,” Breast Cancer Research and Treatment, vol. 79, no. 1, pp. 47–57, 2003.
[15]
T. L. Edwards, “Prevalence and aetiology of lymphoedema after breast cancer treatment in southern Tasmania,” Australian and New Zealand Journal of Surgery, vol. 70, no. 6, pp. 412–418, 2000.
[16]
K. A. Meeske, J. Sullivan-Halley, A. W. Smith et al., “Risk factors for arm lymphedema following breast cancer diagnosis in Black women and White women,” Breast Cancer Research and Treatment, vol. 113, no. 2, pp. 383–391, 2009.
[17]
S. S. Mak, W. Yeo, Y. M. Lee et al., “Predictors of lymphedema in patients with breast cancer undergoing axillary lymph node dissection in hong kong,” Nursing Research, vol. 57, no. 6, pp. 416–425, 2008.
[18]
S. C. Hayes, M. Janda, B. Cornish, D. Battistutta, and B. Newman, “Lymphedema after breast cancer: incidence, risk factors, and effect on upper body function,” Journal of Clinical Oncology, vol. 26, no. 21, pp. 3536–3542, 2008.
[19]
M. Foldi, E. Foldi, and S. F. E. Kubik, Text Book of Lymphology for Physicians and Lymphedema Therapists, Urban & Fischer, Munchen, Bavaria, 1st edition, 2003.
[20]
H. Schunemann and N. Willich, “Lymphedema after breast carcinoma. A study of 5868 cases,” Dtsch Med Wochenschr, vol. 122, no. 17, pp. 536–541, 1997.
[21]
J. I. Goldberg, E. R. Riedel, M. Morrow, and K. J. Van Zee, “Morbidity of sentinel node biopsy: relationship between number of excised lymph nodes and patient perceptions of lymphedema,” Annals of Surgical Oncology, vol. 18, no. 10, pp. 2866–2872, 2011.
[22]
R. Clark, T. Wasilewska, and J. Carter, “Lymphoedema: a study of Otago women treated for breast cancer,” Nursing Praxis in New Zealand Inc, vol. 12, no. 2, pp. 4–15, 1997.
[23]
E. D. Paskett and N. Stark, “Lymphedema: knowledge, treatment, and impact among breast cancer survivors,” Breast Journal, vol. 6, no. 6, pp. 373–378, 2000.
[24]
C. J. Moffatt, P. J. Franks, D. C. Doherty, et al., “Lymphedema: an underestimated health problem,” QJM, vol. 96, pp. 731–738, 2003.