全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging

DOI: 10.1155/2013/781603

Full-Text   Cite this paper   Add to My Lib

Abstract:

For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications. 1. Background There have been many methods used to study the biomechanics of tissue structure today. Biological tissues are widely used in animal experiments, physical experiments, and in vitro (cadaver) experiments, all of which are included in human in vitro experiments. Animal experiments can provide the physiopathological responses in living bodies, but animals in vivo cannot be used to solve all the problems regarding human characteristics, because their tissue structure and functions are different from those of humans. Physical experiments only offer limited effects for lacking of geometrical structure characteristics of living bodies. Human cadaver model experiments would yield experimental data closest to practical outcomes because of the similar geometrical structure characteristics of human cadavers with the living bodies, but the cost is high and simulation of the characteristic changes of living body is difficult when testing. At present, most biomechanical methods can only detect the external mechanical changes of human specimens. Thus, it is difficult to fully reveal the mechanisms of interaction of each part, and the internal structure displacement and internal stress change can be only presumed according to the pathological process, which lacked objective experimental support. Three-dimensional image reconstruction and finite element simulation can solve these problems. Computer simulation experiments, such as finite element models, can reflect the situations after reconstructing repeatedly simulating experiments or changing some parameters according to the biomechanical characteristics, which cannot be obtained by other methods. Finite element method (FEM) has been shown to be an effective analysis of theoretical biomechanics. It uses the mathematical

References

[1]  L. Hoyte, L. Schierlitz, K. Zou, G. Flesh, and J. R. Fielding, “Two- and 3-dimensional MRI comparison of levator ani structure, volume, and integrity in women with stress incontinence and prolapse,” American Journal of Obstetrics and Gynecology, vol. 185, no. 1, pp. 11–19, 2001.
[2]  N. Magnenat-Thalmann, L. Yahia-Cherif, and H. Seo, “Modeling anatomical-based humans,” in Proceedings of the 3rd International Conference on Image and Graphics (ICIG ’04), pp. 476–480, December 2004.
[3]  A. Monro, Observations on the Structure and Function of the Nervous System, vol. 5, Creech & Johnson, Edinburgh, UK, 1823.
[4]  G. Kellie, “An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Edinburgh,” Transactions Medico-Chirurgical Science, vol. 1, pp. 84–169, 1824.
[5]  E. W. Retzlaff, L. Jones, F. L. Mitchell Jr., and J. Upledger, “Possible autonomic innervation of cranial sutures of primates and other animals,” Brain Research, vol. 58, pp. 470–477, 1973.
[6]  W. D. Lakin, S. A. Stevens, B. I. Tranmer, and P. L. Penar, “A whole-body mathematical model for intracranial pressure dynamics,” Journal of Mathematical Biology, vol. 46, no. 4, pp. 347–383, 2003.
[7]  R. M. Jones, Composite Material, vol. 6, Shanghai Science and Technology Publisher, 1st edition, 1981.
[8]  S. Cheng, “The methodology of finite element method,” Chongqing University Journal, vol. 7, no. 4, pp. 61–63, 2001.
[9]  Y. Wang, Y. Li, K. Dai, et al., “Stress analysis on the femoral stem in the replacement of artificial joint,” Chinese Journal of Bone and Joint Injury, vol. 8, no. 1, article 40, 1993.
[10]  M. Zhang, W. Zhao, L. Yua, J. Li, L. Tang, and S. Zhong, “Three dimensional finite element modeling study of the effect of femoral quality on hip arthroplasty,” Journal of First Military Medical University, vol. 23, no. 6, pp. 527–529, 2003.
[11]  C. Zhang, X. Ma, S. Zhang, et al., “Finite element analysis of the stress induced by an endodontic endosseous implant placed through a centeral incisor with periodontal compromises,” Journal of Practical Stomatology, vol. 19, article 103, 2003.
[12]  J. Gui, Q. Zhou, X. Gu et al., “Three dimensional finite element modeling study of the effect of femoral quality on hip arthroplasty,” The Journal of Bone Joint Injury, vol. 15, no. 3, pp. 212–240, 2000.
[13]  Y. Shu, S. Xu, R. Chen, and X. Liu, “The study of the relation between the wrong using of pillow and the cause of cervical spondylosis with the spacial analytical method of finite element in dynamic models,” Journal of Traditional Medical Traumatology & Orthopedics, vol. 7, no. 6, pp. 9–12, 1999.
[14]  L. Dai, Y. Xu, W. Zhang, K. Tu, and P. Cheng, “A three-dimensional finite analysis of lumbar intervertebral disc,” Journal of Biomedical Engineering, vol. 8, no. 3, pp. 237–441, 1991.
[15]  W. Min, “Observation and nursing for fever caused by acute cerebrovascular disease,” Contemporary Medicine, vol. 143, pp. 100–101, 2008.
[16]  T. Shiozaki, H. Sugimoto, M. Taneda et al., “Selection of severely head injured patients for mild hypothermia therapy,” Journal of Neurosurgery, vol. 89, no. 2, pp. 206–211, 1998.
[17]  C. Lingjuan, “Current situation and development trend at home and abroad of hypothermia therapy nursing,” Chinese Medicine of Factory and Mine, vol. 18, no. 3, pp. 268–269, 2005.
[18]  X. F. Yue, L. Wang, and F. Zhou, “Experimental Study on the strains of skull in rats with the changing intracranial pressure,” Tianjin Medicine Journal, vol. 35, no. 2, pp. 140–141, 2007.
[19]  X. F. Yue, L. Wang, and F. Zhou, “Strain analysis on the superficial surface of skull as intracranial pressure changing,” Journal of University of Science and Technology Beijing, vol. 28, no. 12, pp. 1143–1151, 2006.
[20]  Q. Xue and J. G. Zhang, “Impact biomechanics researches and finite element simulation for human head and neck,” Journal of Clinical Rehabilitative Tissue Engineering Research, vol. 12, no. 48, pp. 9557–9560, 2008.
[21]  Z. Zong, H. P. Lee, and C. Lu, “A three-dimensional human head finite element model and power flow in a human head subject to impact loading,” Journal of Biomechanics, vol. 39, no. 2, pp. 284–292, 2006.
[22]  L. Ren, L. Hao, L. Shuyuan, et al., “A study of the volume of cranial cavity calculating from the dimension of cranial outer surface in X-ray films—its stepw ise regressive equation and evaluation,” Acta Anthropological Sinica, vol. 18, no. 1, pp. 17–21, 1999.
[23]  L. Yunhong, G. Yanbo, W. Yunjian, et al., “Experiment study on shock resistance of skull bone,” Medical Journal of the Chinese People's Armed Police Forces, vol. 9, no. 7, pp. 408–409, 1998.
[24]  H. Li, S. Ruan, X. Peng, Z. Xie, H. Wang, and W. Liu, “The thickness measurement of alive human skull based on CT image,” Journal of Biomedical Engineering, vol. 24, no. 5, pp. 964–980, 2007.
[25]  L. Zhou, D. Song, and Z. Ding, “Biomechanical study of human dura and its substitutes,” Chinese Medical Journal, vol. 115, no. 11, pp. 1657–1659, 2002.
[26]  R. Willinger, H. S. Kang, and B. M. Diaw, “Development and validation of a human head mechanical model,” Comptes Rendus de l'Academie de Sciences, vol. 327, no. 1, pp. 125–131, 1999.
[27]  A. Odgaard and F. Linde, “The underestimation of Young's modulus in compressive testing of cancellous bone specimens,” Journal of Biomechanics, vol. 24, no. 8, pp. 691–698, 1991.
[28]  S. Wenjun and H. Jialin, Handbook of Critical Illness Care, People’s Military Medical Press, 1994.
[29]  M. P. Powell and H. A. Crockard, “Behavior of an extradural pressure monitor in clinical use. Comparison of extradural with intraventricular pressure in patients with acute and chronically raised intracranial pressure,” Journal of Neurosurgery, vol. 63, no. 5, pp. 745–749, 1985.
[30]  D. J. Rudolph, M. G. Willes, and G. T. Sameshima, “A finite element model of apical force distribution from orthodontic tooth movement,” The Angle Orthodontist, vol. 71, no. 2, pp. l27–l31, 2001.
[31]  B. Schmidt and J. Klingelh?fer, “Clinical applications of a non-invasive ICP monitoring method,” European Journal of Ultrasound, vol. 16, no. 1-2, pp. 37–45, 2002.
[32]  J. L. Shah, “Positive lumbar extradural space pressure,” British Journal of Anaesthesia, vol. 73, no. 3, pp. 309–314, 1994.
[33]  M. Stevanovic, G. R. Wodicka, J. D. Bourland et al., “The effect of elevated intracranial pressure on the vibrational response of the ovine head,” Annals of Biomedical Engineering, vol. 23, no. 6, pp. 720–727, 1995.
[34]  X. F. Yue, L. Wang, and F. Zhou, “Finite element analysis on strains of viscoelastic human skull and dura mater,” Journal of Basic Science and Engineering, vol. 16, no. 5, pp. 686–694, 2008.
[35]  J. E. Melton and E. E. Nattie, “Intracranial volume adjustments and cerebrospinal fluid pressure in the osmotically swollen rat brain,” The American Journal of Physiology, vol. 246, no. 4, pp. R533–541, 1984.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133