Breast cancer is a major cause of cancer death in women where early detection and accurate assessment of therapy response can improve clinical outcomes. Molecular imaging, which includes PET, SPECT, MRI, and optical modalities, provides noninvasive means of detecting biological processes and molecular events in vivo. Molecular imaging has the potential to enhance our understanding of breast cancer biology and effects of drug action during both preclinical and clinical phases of drug development. This has led to the identification of many molecular imaging probes for key processes in breast cancer. Hormone receptors, growth factor receptor, and angiogenic factors, such as ER, PR, HER2, and VEGFR, have been adopted as imaging targets to detect and stage the breast cancer and to monitor the treatment efficacy. Receptor imaging probes are usually composed of targeting moiety attached to a signaling component such as a radionuclide that can be detected using dedicated instruments. Current molecular imaging probes involved in breast cancer diagnosis and therapy evaluation are reviewed, and future of molecular imaging for the preclinical and clinical is explained. 1. Introduction Breast cancer is a major cause of mortality in women worldwide. In the US, approximately 40,000 women die of breast cancer every year and about 1 in 8 women will be diagnosed with breast cancer over the course of her lifetime. Although mammography remains a key imaging method for screening of breast cancer, the overall accuracy of this test is low [1, 2], particularly in the setting of fibrocystic breast disease and dense breast tissue in young women. There remains a great demand for the ability to define the extent of disease, to monitor treatment response and to predict tumor behavior in breast cancer patients in which molecular imaging may play an important role. Molecular imaging, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and ultrasound, provides noninvasive in vivo information on important biological and molecular events, which can ultimately lead to improved early detection and characterization of therapy response. The goal of molecular imaging is to detect and quantify biological processes at the cellular and subcellular levels in living subjects. Molecular changes in tissue and organ from functional molecular imaging can be used for comparing to traditional imaging which usually gives only anatomic information. With advancements in instrumentation and introduction of
References
[1]
D. S. M. Buist, P. L. Porter, C. Lehman, S. H. Taplin, and E. White, “Factors contributing to mammography failure in women aged 40–49 years,” Journal of the National Cancer Institute, vol. 96, no. 19, pp. 1432–1440, 2004.
[2]
F. Bénard and é. Turcotte, “Imaging in breast cancer: single-photon computed tomography and positron-emission tomography,” Breast Cancer Research, vol. 7, no. 4, pp. 153–162, 2005.
[3]
J. Czernin, M. Allen-Auerbach, and H. R. Schelbert, “Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006,” Journal of Nuclear Medicine, vol. 48, supplement 1, pp. 78S–88S, 2007.
[4]
C. Gunanathan, A. Pais, E. Furman-Haran et al., “Water-soluble contrast agents targeted at the estrogen receptor for molecular magnetic resonance imaging,” Bioconjugate Chemistry, vol. 18, no. 5, pp. 1361–1365, 2007.
[5]
C. R. Anderson, X. Hu, H. Zhang et al., “Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent,” Investigative Radiology, vol. 46, no. 4, pp. 215–224, 2011.
[6]
“Molecular Imaging and Contrast Agent Database (MICAD),” National Center for Biotechnology Information, Bethesda, Md, USA, 2004–2012, http://www.ncbi.nlm.nih.gov/books/NBK5330/.
[7]
F. L. Kong, E. E. Kim, and D. J. Yang, “Targeted nuclear imaging of breast cancer: status of radiotracer development and clinical applications,” Cancer Biotherapy Radiopharmaceuticals, vol. 27, no. 2, pp. 105–112, 2012.
[8]
I. Pe?uelas, I. Domínguez-Prado, M. J. García-Velloso et al., “PET tracers for clinical imaging of breast cancer,” Journal of Oncology, vol. 2012, Article ID 710561, 9 pages, 2012.
[9]
K. Schilling, D. Narayanan, J. E. Kalinyak et al., “Positron emission mammography in breast cancer presurgical planning: comparisons with magnetic resonance imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 38, no. 1, pp. 23–36, 2011.
[10]
C. Riegger, J. Herrmann, J. Nagarajah et al., “Whole-body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 39, no. 5, pp. 852–863, 2012.
[11]
A. A. Zytoon, K. Murakami, M. R. El-Kholy, and E. El-Shorbagy, “Dual time point FDG-PET/CT imaging…Potential tool for diagnosis of breast cancer,” Clinical Radiology, vol. 63, no. 11, pp. 1213–1227, 2008.
[12]
S. H. Park, W. K. Moon, N. Cho et al., “Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer,” European Radiology, vol. 22, no. 1, pp. 18–25, 2012.
[13]
T. S. Aukema, E. J. T. Rutgers, W. V. Vogel et al., “The role of FDG PET/CT in patients with locoregional breast cancer recurrence: a comparison to conventional imaging techniques,” European Journal of Surgical Oncology, vol. 36, no. 4, pp. 387s–392s, 2010.
[14]
C. Rousseau, A. Devillers, C. Sagan et al., “Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [ ] fluorodeoxyglucose positron emission tomography,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5366–5372, 2006.
[15]
J. Schwarz-Dose, M. Untch, R. Tiling et al., “Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose,” Journal of Clinical Oncology, vol. 27, no. 4, pp. 535–541, 2009.
[16]
J. Tseng, L. K. Dunnwald, E. K. Schubert et al., “18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy,” Journal of Nuclear Medicine, vol. 45, no. 11, pp. 1829–1837, 2004.
[17]
J. R. Grierson and A. F. Shields, “Radiosynthesis of -deoxy- -[18F]fluorothymidine: [18F]FLT for imaging of cellular proliferation in vivo,” Nuclear Medicine and Biology, vol. 27, no. 2, pp. 143–156, 2000.
[18]
J. S. Rasey, J. R. Grierson, L. W. Wiens, P. D. Kolb, and J. L. Schwartz, “Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells,” Journal of Nuclear Medicine, vol. 43, no. 9, pp. 1210–1217, 2002.
[19]
B. Smyczek-Gargya, N. Fersis, H. Dittmann et al., “PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 31, no. 5, pp. 720–724, 2004.
[20]
K. B. Contractor, L. M. Kenny, J. Stebbing et al., “[18F]- deoxy- -fluorothymidine positron emission tomography and breast cancer response to docetaxel,” Clinical Cancer Research, vol. 17, no. 24, pp. 7664–7672, 2011.
[21]
L. M. Kenny, K. B. Contractor, J. Stebbing et al., “Altered tissue 3′-deoxy-3′-[18F]fluorothymidine pharmacokinetics in human breast cancer following capecitabine treatment detected by positron emission tomography,” Clinical Cancer Research, vol. 15, no. 21, pp. 6649–6657, 2009.
[22]
L. M. Kenny, K. B. Contractor, J. Stebbing et al., “Altered tissue 3′-deoxy-3′-[18F]fluorothymidine pharmacokinetics in human breast cancer following capecitabine treatment detected by positron emission tomography,” Clinical Cancer Research, vol. 15, no. 21, pp. 6649–6657, 2009.
[23]
H. M. Linden, S. A. Stekhova, J. M. Link et al., “Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer,” Journal of Clinical Oncology, vol. 24, no. 18, pp. 2793–2799, 2006.
[24]
Y. Seimbille, J. Rousseau, F. Bénard et al., “18F-labeled difluoroestradiols: preparation and preclinical evaluation as estrogen receptor-binding radiopharmaceuticals,” Steroids, vol. 67, no. 9, pp. 765–775, 2002.
[25]
J. M. Beauregard, é. Croteau, N. Ahmed, J. E. Van Lier, and F. Bénard, “Assessment of human biodistribution and dosimetry of 4-fluoro-11β-methoxy-16α-18F-fluoroestradiol using serial whole-body PET/CT,” Journal of Nuclear Medicine, vol. 50, no. 1, pp. 100–107, 2009.
[26]
L. J. M. Rijks, G. J. Boer, E. Endert, K. De Bruin, A. G. M. Janssen, and E. A. Van Royen, “The Z-isomer of 11β-methoxy-17α-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer,” Nuclear Medicine and Biology, vol. 24, no. 1, pp. 65–75, 1997.
[27]
L. J. M. Rijks, E. B. Sokole, M. G. Stabin, K. De Bruin, A. G. M. Janssen, and E. A. Van Royen, “Biodistribution and dosimetry of iodine-123-labelled Z-MIVE: an oestrogen receptor radioligand for breast cancer imaging,” European Journal of Nuclear Medicine, vol. 25, no. 1, pp. 40–47, 1998.
[28]
T. K. Nayak, H. J. Hathaway, C. Ramesh et al., “Preclinical development of a neutral, estrogen receptor-targeted, tridentate c(I)-estradiol-pyridin-2-yl hydrazine derivative for imaging of breast and endometrial cancers,” Journal of Nuclear Medicine, vol. 49, no. 6, pp. 978–986, 2008.
[29]
N. Takahashi, D. J. Yang, S. Kohanim et al., “Targeted functional imaging of estrogen receptors with c-GAP-EDL,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 3, pp. 354–362, 2007.
[30]
D. J. Yang, C. Li, L. R. Kuang et al., “Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues,” Life Sciences, vol. 55, no. 1, pp. 53–67, 1994.
[31]
T. Inoue, E. E. Kim, S. Wallace et al., “Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study,” Cancer Biotherapy and Radiopharmaceuticals, vol. 11, no. 4, pp. 235–245, 1996.
[32]
J. W. Seo, D. Y. Chi, C. S. Dence, M. J. Welch, and J. A. Katzenellenbogen, “Synthesis and biodistribution of fluorine-18-labeled fluorocyclofenils for imaging the estrogen receptor,” Nuclear Medicine and Biology, vol. 34, no. 4, pp. 383–390, 2007.
[33]
J. W. Seo, J. S. Comninos, D. Y. Chi, D. W. Kim, K. E. Carlson, and J. A. Katzenellenbogen, “Fluorine-substituted cyclofenil derivatives as estrogen receptor ligands: synthesis and structure-affinity relationship study of potential positron emission tomography agents for imaging estrogen receptors in breast cancer,” Journal of Medicinal Chemistry, vol. 49, no. 8, pp. 2496–2511, 2006.
[34]
A. Yurt, F. Z. B. Muftuler, P. Unak, S. Yolcular, C. Acar, and H. Enginar, “Synthesis of a novel antiestrogen radioligand ( c-TOR-DTPA),” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 6, pp. 707–716, 2009.
[35]
M. Gao, M. Wang, K. D. Miller, G. W. Sledge, and Q. H. Zheng, “Synthesis and preliminary biological evaluation of new carbon-11 labeled tetrahydroisoquinoline derivatives as SERM radioligands for PET imaging of ER expression in breast cancer,” European Journal of Medicinal Chemistry, vol. 43, no. 10, pp. 2211–2219, 2008.
[36]
A. Verhagen, G. Luurtsema, J. W. Pesser et al., “Preclinical evaluation of a positron emitting progestin ([18F]fluoro-16α-methyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography,” Cancer Letters, vol. 59, no. 2, pp. 125–132, 1991.
[37]
F. Dehdashti, A. H. McGuire, H. F. Van Brocklin et al., “Assessment of 21-[18F]fluoro-16α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas,” Journal of Nuclear Medicine, vol. 32, no. 8, pp. 1532–1537, 1991.
[38]
H. B. Zhou, J. H. Lee, C. G. Mayne, K. E. Carlson, and J. A. Katzenellenbogen, “Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of Tanaproget,” Journal of Medicinal Chemistry, vol. 53, no. 8, pp. 3349–3360, 2010.
[39]
J. H. Lee, H. B. Zhou, C. S. Dence, K. E. Carlson, M. J. Welch, and J. A. Katzenellenbogen, “Development of [F-18]fluorine-substituted tanaproget as a progesterone receptor imaging agent for positron emission tomography,” Bioconjugate Chemistry, vol. 21, no. 6, pp. 1096–1104, 2010.
[40]
E. C. Dijkers, T. H. Oude Munnink, J. G. Kosterink et al., “Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer,” Clinical Pharmacology and Therapeutics, vol. 87, no. 5, pp. 586–592, 2010.
[41]
K. McLarty, B. Cornelissen, D. A. Scollard, S. J. Done, K. Chun, and R. M. Reilly, “Associations between the uptake of 111In-DTPA-trastuzumab, HER2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 1, pp. 81–93, 2009.
[42]
K. McLarty, B. Cornelissen, Z. Cai et al., “Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated HER2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts,” Journal of Nuclear Medicine, vol. 50, no. 8, pp. 1340–1348, 2009.
[43]
I. Vaneycken, N. Devoogdt, N. Van Gassen et al., “Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer,” The FASEB Journal, vol. 25, no. 7, pp. 2433–2446, 2011.
[44]
T. J. Chen, T. H. Cheng, C. Y. Chen et al., “Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI,” Journal of Biological Inorganic Chemistry, vol. 14, no. 2, pp. 253–260, 2009.
[45]
H. M. Yang, C. W. Park, M. A. Woo et al., “HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging,” Biomacromolecules, vol. 11, no. 11, pp. 2866–2872, 2010.
[46]
M. Ogawa, C. A. S. Regino, J. Seidel et al., “Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection,” Bioconjugate Chemistry, vol. 20, no. 11, pp. 2177–2184, 2009.
[47]
V. Tolmachev, I. Velikyan, M. Sandstr?m, and A. Orlova, “A HER2-binding Affibody molecule labelled with 68Ga for PET imaging: direct in vivo comparison with the 111In-labelled analogue,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 37, no. 7, pp. 1356–1367, 2010.
[48]
S. Ahlgren, H. W?llberg, T. A. Tran et al., “Targeting of HER2-expressing tumors with a site-specifically c-labeled recombinant affibody molecule, , with C-terminally engineered cysteine,” Journal of Nuclear Medicine, vol. 50, no. 5, pp. 781–789, 2009.
[49]
M. Kinoshita, Y. Yoshioka, Y. Okita, N. Hashimoto, and T. Yoshimine, “MR molecular imaging of HER-2 in a murine tumor xenograft by SPIO labeling of anti-HER-2 affibody,” Contrast Media and Molecular Imaging, vol. 5, no. 1, pp. 18–22, 2010.
[50]
A. Becker, C. Hessenius, K. Licha et al., “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nature Biotechnology, vol. 19, no. 4, pp. 327–331, 2001.
[51]
J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” Journal of Biomedical Optics, vol. 6, no. 2, pp. 122–133, 2001.
[52]
P. M. Smith-Jones, D. B. Solit, T. Akhurst, F. Afroze, N. Rosen, and S. M. Larson, “Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors,” Nature Biotechnology, vol. 22, no. 6, pp. 701–706, 2004.
[53]
T. H. Oude Munnink, M. A. D. Korte, W. B. Nagengast et al., “89Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft,” European Journal of Cancer, vol. 46, no. 3, pp. 678–684, 2010.
[54]
G. Kramer-Marek, D. O. Kiesewetter, and J. Capala, “Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and 18F-labeled affibody molecules,” Journal of Nuclear Medicine, vol. 50, no. 7, pp. 1131–1139, 2009.
[55]
S. M. W. Y. Van De Ven, S. G. Elias, C. T. Chan et al., “Optical imaging with Her2-targeted affibody molecules can monitor Hsp90 treatment response in a breast cancer xenograft mouse model,” Clinical Cancer Research, vol. 18, no. 4, pp. 1073–1081, 2012.
[56]
H. Wang, J. Yu, G. Yang et al., “Assessment of 11C-labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression,” Cancer Science, vol. 98, no. 9, pp. 1413–1416, 2007.
[57]
K.-H. Jung, Y. S. Choe, J.-Y. Paik, and K.-H. Lee, “ c-hydrazinonicotinamide epidermal growth factor-polyethylene glycol-quantum dot imaging allows quantification of breast cancer epidermal growth factor receptor expression and monitors receptor downregulation in response to cetuximab therapy,” Journal of Nuclear Medicine, vol. 52, no. 9, pp. 1457–1464, 2011.
[58]
S. Ke, X. Wen, M. Gurfinkel et al., “Near-infrared optical imaging of epidermal growth factor receptor in breast ancer xenografts,” Cancer Research, vol. 63, no. 22, pp. 7870–7875, 2003.
[59]
X. Hun and Z. Zhang, “Anti-epidermal growth factor receptor (anti-EGFR) antibody conjugated fluorescent nanoparticles probe for breast cancer imaging,” Spectrochimica Acta A, vol. 74, no. 2, pp. 410–414, 2009.
[60]
S. Qi, Z. Miao, H. Liu, Y. Xu, Y. Feng, and Z. Cheng, “Evaluation of four affibody-based near-infrared fluorescent probes for optical imaging of epidermal growth factor receptor positive tumors,” Bioconjugate Chemistry, vol. 23, no. 6, pp. 1149–1156, 2012.
[61]
S. Heskamp, H. W. M. Van Laarhoven, J. D. M. Molkenboer-Kuenen et al., “ImmunoSPECT and immunoPET of IGF-1R expression with the radiolabeled antibody R1507 in a triple-negative breast cancer model,” Journal of Nuclear Medicine, vol. 51, no. 10, pp. 1565–1572, 2010.
[62]
S. S. Heskamp, O. C. Boerman, W. J. G. Oyen, J. D. M. Molkenboer-Kuenen, W. T. A. van der Graaf, and H. W. M. van Laarhoven, “In vivo imaging of modulation of IGF-1R expression in breast cancer models,” European Journal of Cancer, vol. 47, supplement 4, S19 pages, 2011.
[63]
H. Zhang, X. Zeng, Q. Li, M. Gaillard-Kelly, C. R. Wagner, and D. Yee, “Fluorescent tumour imaging of type I IGF receptor in vivo: comparison of antibody-conjugated quantum dots and small-molecule fluorophore,” British Journal of Cancer, vol. 101, no. 1, pp. 71–79, 2009.
[64]
X. Tian, M. R. Aruva, W. Qin et al., “External imaging of CCND1 cancer gene activity in experimental human breast cancer xenografts with c-peptide-peptide nucleic acid-peptide chimeras,” Journal of Nuclear Medicine, vol. 45, no. 12, pp. 2070–2082, 2004.
[65]
X. Tian, M. R. Aruva, W. Qin et al., “Noninvasive molecular imaging of MYC mRNA expression in human breast cancer xenografts with a [ c] peptide-peptide nucleic acid-peptide chimera,” Bioconjugate Chemistry, vol. 16, no. 1, pp. 70–79, 2005.
[66]
X. Tian, A. Chakrabarti, N. V. Amirkhanov et al., “External imaging of CCND1, MYC, and KRAS oncogene mRNAs with tumor-targeted radionuclide-PNA-peptide chimeras,” Annals of the New York Academy of Sciences, vol. 1059, pp. 106–144, 2005.
[67]
X. Tian, M. R. Aruva, K. Zhang et al., “PET imaging of CCND1 mRNA in human MCF7 estrogen receptor-positive breast cancer xenografts with oncogene-specific [64Cu]chelator-peptide nucleic acid-IGF1 analog radiohybridization probes,” Journal of Nuclear Medicine, vol. 48, no. 10, pp. 1699–1707, 2007.
[68]
X. Tian, A. Chakrabarti, N. Amirkhanov et al., “Receptor-mediated internalization of chelator-PNA-peptide hybridization probes for radioimaging or magnetic resonance imaging of oncogene mRNAs in tumours,” Biochemical Society Transactions, vol. 35, no. 1, pp. 72–76, 2007.
[69]
H. Wang, W. Cai, K. Chen et al., “A new PET tracer specific for vascular endothelial growth factor receptor 2,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 12, pp. 2001–2010, 2007.
[70]
A. Lyshchik, A. C. Fleischer, J. Huamani, D. E. Hallahan, M. Brissova, and J. C. Gore, “Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography,” Journal of Ultrasound in Medicine, vol. 26, no. 11, pp. 1575–1586, 2007.
[71]
Z. Levashova, M. Backer, C. V. Hamby, J. Pizzonia, J. M. Backer, and F. G. Blankenberg, “Molecular imaging of changes in the prevalence of vascular endothelial growth factor receptor in sunitinib-treated murine mammary tumors,” Journal of Nuclear Medicine, vol. 51, no. 6, pp. 959–966, 2010.
[72]
X. Chen, R. Park, M. Tohme, A. H. Shahinian, J. R. Bading, and P. S. Conti, “MicroPET and autoradiographic imaging of breast cancer αv-Integrin Expression Using 18F- and 64Cu-Labeled RGD Peptide,” Bioconjugate Chemistry, vol. 15, no. 1, pp. 41–49, 2004.
[73]
X. Chen, S. Liu, Y. Hou et al., “MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides,” Molecular Imaging and Biology, vol. 6, no. 5, pp. 350–359, 2004.
[74]
W. Cai, X. Zhang, Y. Wu, and X. Chen, “A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido) ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression,” Journal of Nuclear Medicine, vol. 47, no. 7, pp. 1172–1180, 2006.
[75]
A. J. Beer, M. Niemeyer, J. Carlsen et al., “Patterns of αvβ3 expression in primary and metastatic human breast cancer as shown by 18F-galacto-RGD PET,” Journal of Nuclear Medicine, vol. 49, no. 2, pp. 255–259, 2008.
[76]
U. Mühlhausen, D. Komljenovic, M. Bretschi et al., “A novel PET tracer for the imaging of αvβ3 and αvβ5 integrins in experimental breast cancer bone metastases,” Contrast Media & Molecular Imaging, vol. 6, no. 6, pp. 413–420, 2011.
[77]
P. Wu, X. He, K. Wang et al., “Imaging breast cancer cells and tissues using peptide-labeled fluorescent silica nanoparticles,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 5, pp. 2483–2487, 2008.
[78]
X. Zhang and X. Chen, “Preparation and characterization of c(CO)3-BPy-RGD complex as αvβ3 integrin receptor-targeted imaging agent,” Applied Radiation and Isotopes, vol. 65, no. 1, pp. 70–78, 2007.
[79]
S. Liu, W. Y. Hsieh, Y. Jiang et al., “Evaluation of a c-labeled cyclic RGD tetramer for noninvasive imaging integrin αvβ3-positive breast cancer,” Bioconjugate Chemistry, vol. 18, no. 2, pp. 438–446, 2007.
[80]
T. Bach-Gansmo, R. Danielsson, A. Saracco et al., “Integrin receptor imaging of breast cancer: a proof-of-concept study to evaluate c-NC100692,” Journal of Nuclear Medicine, vol. 47, no. 9, pp. 1434–1439, 2006.
[81]
R. Axelsson, T. Bach-Gansmo, J. Castell-Conesa, and B. J. McParland, “An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the αvβ3-selective angiogenesis imaging agent c-NC100692,” Acta Radiologica, vol. 51, no. 1, pp. 40–46, 2010.
[82]
B. Zarabi, M. P. Borgman, J. Zhuo, R. Gullapalli, and H. Ghandehari, “Noninvasive monitoring of HPMA copolymer-RGDfK conjugates by magnetic resonance imaging,” Pharmaceutical Research, vol. 26, no. 5, pp. 1121–1129, 2009.
[83]
T. H. O. Munnink, W. B. Nagengast, A. H. Brouwers et al., “Molecular imaging of breast cancer,” Breast, vol. 18, supplement 3, pp. S66–S73, 2009.
[84]
P. Padmanabhan, J. Goggi, R. Bejot, and K. K. Bhakoo, “Molecular targeting of breast cancer: molecular imaging and therapy,” Current Pharmaceutical Biotechnology, vol. 12, no. 4, pp. 528–538, 2011.
[85]
T. V. Sekar, A. Dhanabalan, and R. Paulmurugan, “Imaging cellular receptors in breast cancers: an overview,” Current Pharmaceutical Biotechnology, vol. 12, no. 4, pp. 508–527, 2011.
[86]
L. Bj?rnstr?m and M. Sj?berg, “Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes,” Molecular Endocrinology, vol. 19, no. 4, pp. 833–842, 2005.
[87]
J. Yoo, C. S. Dence, T. L. Sharp, J. A. Katzenellenbogen, and M. J. Welch, “Synthesis of an estrogen receptor β-selective radioligand: 5-[18F]fluoro-(2R*,3S*)-2,3-bis(4-hydroxyphenyl) pentanenitrile and comparison of in vivo distribution with 16α-[18F]fluoro-17β-estradiol,” Journal of Medicinal Chemistry, vol. 48, no. 20, pp. 6366–6378, 2005.
[88]
A. Citri and Y. Yarden, “EGF-ERBB signalling: towards the systems level,” Nature Reviews Molecular Cell Biology, vol. 7, no. 7, pp. 505–516, 2006.
[89]
J. Capala and K. Bouchelouche, “Molecular imaging of HER2-positive breast cancer: a step toward an individualized “image and treat” strategy,” Current Opinion in Oncology, vol. 22, no. 6, pp. 559–566, 2010.
[90]
S. Scholl, P. Beuzeboc, and P. Pouillart, “Targeting HER2 in other tumor types,” Annals of Oncology, vol. 12, supplement 1, pp. S81–S87, 2001.
[91]
P. Chevallier, N. Rabillard, S. Wuilleme-Taumi, F. Méchinaud, J. L. Harousseau, and H. Avet-Loiseau, “Overexpression of Her2/neu is observed in one third of adult acute lymphoblastic leukemia patients and is associated with chemoresistance in these patients,” Haematologica, vol. 89, no. 11, pp. 1399–1401, 2004.
[92]
F. Meric-Bernstam and M. C. Hung, “Advances in targeting human epidermal growth factor receptor-2 signaling for cancer therapy,” Clinical Cancer Research, vol. 12, no. 21, pp. 6326–6330, 2006.
[93]
A. Serrano-Olvera, A. Due?as-González, D. Gallardo-Rincón, M. Candelaria, and J. De la Garza-Salazar, “Prognostic, predictive and therapeutic implications of HER2 in invasive epithelial ovarian cancer,” Cancer Treatment Reviews, vol. 32, no. 3, pp. 180–190, 2006.
[94]
E. Tagliabue, A. Balsari, M. Campiglio, and S. M. Pupa, “HER2 as a target for breast cancer therapy,” Expert Opinion on Biological Therapy, vol. 10, no. 5, pp. 711–724, 2010.
[95]
E. Zwick, C. Wallasch, and A. Ullrich, “HER2/neu: a target for breast cancer therapy,” Breast Disease, vol. 11, pp. 7–18, 2000.
[96]
M. Ignatiadis, C. Desmedt, C. Sotiriou, E. De Azambuja, and M. Piccart, “HER-2as a target for breast cancer therapy,” Clinical Cancer Research, vol. 15, no. 6, pp. 1848–1852, 2009.
[97]
E. C. F. Dijkers, J. G. W. Kosterink, A. P. Rademaker et al., “Development and characterization of clinical-grade 89Zr- trastuzumab for HER2/neu immunoPET imaging,” Journal of Nuclear Medicine, vol. 50, no. 6, pp. 974–981, 2009.
[98]
J. Feldwisch, V. Tolmachev, C. Lendel et al., “Design of an optimized scaffold for affibody molecules,” Journal of Molecular Biology, vol. 398, no. 2, pp. 232–247, 2010.
[99]
J. L?fblom, J. Feldwisch, V. Tolmachev, J. Carlsson, S. St?hl, and F. Y. Frejd, “Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications,” FEBS Letters, vol. 584, no. 12, pp. 2670–2680, 2010.
[100]
J. E. Dancey, “Recent advances of molecular targeted agents opportunities for imaging,” Cancer Biology and Therapy, vol. 2, no. 6, pp. 601–609, 2003.
[101]
D. LeRoith, H. Werner, S. Neuenschwander, T. Kalebic, and L. J. Helman, “The role of the insulin-like growth factor-I receptor in cancer,” Annals of the New York Academy of Sciences, vol. 766, pp. 402–408, 1995.
[102]
L. Good and P. E. Nielsen, “Progress in developing PNA as a gene-targeted drug,” Antisense and Nucleic Acid Drug Development, vol. 7, no. 4, pp. 431–437, 1997.
[103]
A. Ray and B. Nordén, “Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future,” The FASEB Journal, vol. 14, no. 9, pp. 1041–1060, 2000.
[104]
A. Kiselyov, K. V. Balakin, and S. E. Tkachenko, “VEGF/VEGFR signalling as a target for inhibiting angiogenesis,” Expert Opinion on Investigational Drugs, vol. 16, no. 1, pp. 83–107, 2007.
[105]
J. C. Soria, J. Fayette, and J. P. Armand, “Molecular targeting: targeting angiogenesis in solid tumors,” Annals of Oncology, vol. 15, supplement 4, pp. iv223–iv227, 2004.