This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10?min) combines a moderate b-value (around 2000?s/mm2) with a relatively low number of acquired directions (>48). Our findings generalize to other methods and additional improvements in MR acquisition techniques. 1. Introduction Diffusion-weighted magnetic resonance imaging (DW-MRI) is a clinical medical imaging technique that provides a unique view on the structure of brain white matter in vivo. Right from its early stages, in the early 1990s, DW-MRI was perceived to have immediate value for the evaluation of neuropathologies such as acute ischemic stroke. Since then, numerous advents in diffusion imaging technology have greatly augmented image quality unraveling new clinical applications. Moreover, the debut of diffusion tensor imaging (DTI) and fiber tractography enabled a completely new, noninvasive view on white matter fibre bundles connecting gray matter neural populations, of increasing importance for cognitive neuroimaging applications. With DTI and fiber tractography, the understanding of several neurological and psychiatric disorders, such as schizophrenia, traumas, stroke, and edemas, has been increased, and they have also been applied clinically to aid presurgical planning before intracranial mass resections. In DW-MRI, white matter fiber bundles are probed indirectly by measuring the directional specificity (anisotropy) of local water diffusion. During a small time interval (the “so-called” effective diffusion time ), at each location of the tissue, the diffusion causes a displacement of water molecules. Postprocessing of diffusion-weighted images is fundamentally aimed
References
[1]
P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical Journal, vol. 66, no. 1, pp. 259–267, 1994.
[2]
L. R. Frank, “Anisotropy in high angular resolution diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 45, no. 6, pp. 935–939, 2001.
[3]
L. R. Frank, “Characterization of anisotropy in high angular resolution diffusion-weighted MRI,” Magnetic Resonance in Medicine, vol. 47, no. 6, pp. 1083–1099, 2002.
[4]
D. Tuch, “Q-ball imaging,” Magnetic Resonance in Medicine, vol. 52, pp. 1358–1372, 2004.
[5]
D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J. Wedeen, “Diffusion MRI of Complex Neural Architecture,” Neuron, vol. 40, no. 5, pp. 885–895, 2003.
[6]
D. C. Alexander, G. J. Barker, and S. R. Arridge, “Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data,” Magnetic Resonance in Medicine, vol. 48, no. 2, pp. 331–340, 2002.
[7]
A. W. Anderson, “Measurement of fiber orientation distributions using high angular resolution diffusion imaging,” Magnetic Resonance in Medicine, vol. 54, no. 5, pp. 1194–1206, 2005.
[8]
M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, “Regularized, fast, and robust analytical Q-ball imaging,” Magnetic Resonance in Medicine, vol. 58, no. 3, pp. 497–510, 2007.
[9]
C. P. Hess, P. Mukherjee, E. T. Han, D. Xu, and D. B. Vigneron, “Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis,” Magnetic Resonance in Medicine, vol. 56, no. 1, pp. 104–117, 2006.
[10]
E. ?zarslan, T. M. Shepherd, B. C. Vemuri, S. J. Blackband, and T. H. Mareci, “Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT),” NeuroImage, vol. 31, no. 3, pp. 1086–1103, 2006.
[11]
J. D. Tournier, F. Calamante, and A. Connelly, “Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution,” NeuroImage, vol. 35, no. 4, pp. 1459–1472, 2007.
[12]
P. Hagmann, L. Jonasson, P. Maeder, J. P. Thiran, J. V. Wedeen, and R. Meuli, “Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond,” Radiographics, vol. 26, pp. S205–S223, 2006.
[13]
M. Descoteaux, High angular resolution diffusion MRI: from local estimation to segmentation and tractography [Ph.D. thesis], Universite de Nice-Sophia Antipolis, 2008.
[14]
P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer, and F. O. Zelaya, “Diffraction-like effects in NMR diffusion studies of fluids in porous solids,” Nature, vol. 351, no. 6326, pp. 467–469, 1991.
[15]
D. S. Tuch, Diffusion MRI of complex tissue structure [Ph.D. thesis], Harvard University, 2002.
[16]
V. J. Wedeen, R. P. Wang, J. D. Schmahmann et al., “Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers,” NeuroImage, vol. 41, no. 4, pp. 1267–1277, 2008.
[17]
E. ?zarslan and T. H. Mareci, “Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging,” Magnetic Resonance in Medicine, vol. 50, no. 5, pp. 955–965, 2003.
[18]
A. W. Anderson, “Measurement of fiber orientation distributions using high angular resolution diffusion imaging,” Magnetic Resonance in Medicine, vol. 54, no. 5, pp. 1194–1206, 2005.
[19]
M. Descoteaux and R. Deriche, “Sharpening improves clinically feasible q-ball imaging reconstructions,” in Proceedings of the 15th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 906, 2007.
[20]
T. Schultz and H. P. Seidel, “Estimating crossing fibers: a tensor decomposition approach,” IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1635–1642, 2008.
[21]
V. J. Wedeen, P. Hagmann, W. Y. I. Tseng, T. G. Reese, and R. M. Weisskoff, “Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1377–1386, 2005.
[22]
O. S?derman and B. J?nsson, “Restricted diffusion in cylindirical geometry,” Journal of Magnetic Resonance, vol. 117, no. 1, pp. 94–97, 1995.
[23]
D. H. A. Barmpoutis, B. C. Vemuri, and J. R. Forder, “Extracting tractosemas from a displacement probability field for tractography in DW-MRI,” in Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI '08), vol. 5241 of Lecture Notes in Computer Science, pp. 9–16, Springer, September 2008.
[24]
E. A. H. Von Dem Hagen and R. M. Henkelman, “Orientational diffusion reflects fiber structure within a voxel,” Magnetic Resonance in Medicine, vol. 48, no. 3, pp. 454–459, 2002.
[25]
V. Pr?kovska, A. F. Roebroeck, W. Pullens, A. Vilanova, and B. M. ter Haar Romeny, “Optimal acquisition schemes in high angular resolution diffusion weighted imaging,” in Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI '08), vol. 5242 of Lecture Notes in Computer Science, pp. 9–17, Springer, 2008.
[26]
S. B. Reeder, B. J. Wintersperger, O. Dietrich et al., “Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil,” Magnetic Resonance in Medicine, vol. 54, no. 3, pp. 748–754, 2005.
[27]
I. Aganj, C. Lenglet, and G. Sapiro, “Accurate ODF reconstruction in q-ball imaging,” NeuroImage, vol. 47, Supplement 1, pp. S51–SS51, 2009, Organization for Human Brain Mapping 2009 Annual Meeting.
[28]
B. Jian and B. C. Vemuri, “A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 11, pp. 1464–1471, 2007.
[29]
D. K. Jones, “The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a monte carlo study,” Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 807–815, 2004.
[30]
D. C. Alexander and G. J. Barker, “Optimal imaging parameters for fiber-orientation estimation in diffusion MRI,” NeuroImage, vol. 27, no. 2, pp. 357–367, 2005.
[31]
L. Zhan, M.-C. Chiang, A. D. Leow et al., “How many gradients are sufficient in high-angular resolution diffusion imaging (HARDI)?” in Proceedings of the MICCAI Workshop on Computational Diffusion (CDMRI '08), New York, NY, USA, 2008.
[32]
J.-D. Tournier, F. Calamante, and A. Connelly, “How many diffusion gradient directions are required for HARDI?” in Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu, Hawaii, USA, 2009.
[33]
K. H. Cho, C. H. Yeh, J. D. Tournier, Y. P. Chao, J. H. Chen, and C. P. Lin, “Evaluation of the accuracy and angular resolution of q-ball imaging,” NeuroImage, vol. 42, no. 1, pp. 262–271, 2008.
[34]
C. Poupon, B. Rieul, I. Kezele, M. Perrin, F. Poupon, and J. F. Mangin, “New diffusion phantoms dedicated to the study and validation of high-angular-resolution diffusion imaging (HARDI) models,” Magnetic Resonance in Medicine, vol. 60, no. 6, pp. 1276–1283, 2008.
[35]
J. D. Tournier, C. H. Yeh, F. Calamante, K. H. Cho, A. Connelly, and C. P. Lin, “Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data,” NeuroImage, vol. 42, no. 2, pp. 617–625, 2008.
[36]
J. D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, “Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution,” NeuroImage, vol. 23, no. 3, pp. 1176–1185, 2004.
[37]
A. Roebroeck, R. Galuske, E. Formisano et al., “High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T,” NeuroImage, vol. 39, no. 1, pp. 157–168, 2008.