Long acquisition times lead to image artifacts in thoracic C-arm CT. Motion blur caused by respiratory motion leads to decreased image quality in many clinical applications. We introduce an image-based method to estimate and compensate respiratory motion in C-arm CT based on diaphragm motion. In order to estimate respiratory motion, we track the contour of the diaphragm in the projection image sequence. Using a motion corrected triangulation approach on the diaphragm vertex, we are able to estimate a motion signal. The estimated motion signal is used to compensate for respiratory motion in the target region, for example, heart or lungs. First, we evaluated our approach in a simulation study using XCAT. As ground truth data was available, a quantitative evaluation was performed. We observed an improvement of about 14% using the structural similarity index. In a real phantom study, using the artiCHEST phantom, we investigated the visibility of bronchial tubes in a porcine lung. Compared to an uncompensated scan, the visibility of bronchial structures is improved drastically. Preliminary results indicate that this kind of motion compensation can deliver a first step in reconstruction image quality improvement. Compared to ground truth data, image quality is still considerably reduced. 1. Introduction C-arm CT has enabled reconstruction of 3D images during medical procedures, for example, cardiac interventions. However, the rather long acquisition time of several seconds may lead to motion artifacts, such as motion blur and streaks. These artifacts are very problematic in many clinical applications. The commonly used technique to reduce the influence of respiratory motion during cardiac procedures is the so-called single breath-hold scan. This approach requires the patient to hold his breath for the duration of the scan. Unfortunately, this technique does not guarantee perfect results. Jahnke et al. have measured residual respiratory motion in almost half of their test group containing 210 people [1]. We have two main applications in the focus of our work. One is the improvement of cardiac C-arm CT. While compensation of the motion of the heart has been investigated intensively in the literature [2–4], the problem of respiratory motion during cardiac C-arm CT is much less frequently addressed. Residual respiratory motion during the cardiac scan causes a considerable reduction in image quality. Motion artifacts are also very problematic in pulmonary procedures. In order to analyze the malignancy of a pulmonary tumor, a sample has to be extracted. A
References
[1]
C. Jahnke, I. Paetsch, S. Achenbach et al., “Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and β-blocker use,” Radiology, vol. 239, no. 1, pp. 71–78, 2006.
[2]
C. Blondel, G. Malandain, R. Vaillant, and N. Ayache, “Reconstruction of coronary arteries from a single rotational X-ray projection sequence,” IEEE Transactions on Medical Imaging, vol. 25, no. 5, pp. 653–663, 2006.
[3]
M. Prümmer, J. Hornegger, G. Lauritsch, L. Wigstr?m, E. Girard-Hughes, and R. Fahrig, “Cardiac c-arm CT: a unified framework for motion estimation and dynamic CT,” IEEE Transactions on Medical Imaging, vol. 28, no. 11, pp. 1836–1849, 2009.
[4]
K. Taguchi, W. P. Segars, G. S. K. Fung, and B. M. W. Tsui, “Toward time resolved 4D cardiac CT imaging with patient dose reduction; estimating the global heart motion,” in Proceedings of the Medical Imaging 2006: Physics of Medical Imaging (SPIE '06), vol. 6142, pp. 61 420J-1–61 420J-9, San Diego, CA, USA, February 2006.
[5]
C. Schaller, J. Penne, and J. Hornegger, “Time-of-flight sensor for respiratory motion gating,” Medical Physics, vol. 35, no. 7, pp. 3090–3093, 2008.
[6]
S. Wiesner and Z. Yaniv, “Respiratory signal generation for retrospective gating of cone-beam CT images,” in Proceedings of the Medical Imaging 2008: Visualization, Image-Guided Procedures, and Modeling (SPIE '08), vol. 6918, pp. 691 817-1–691 817-12, San Diego, CA, USA, February 2008.
[7]
T. E. Marchant, G. J. Price, B. J. Matuszewski, and C. J. Moore, “Reduction of motion artefacts in on-board cone beam CT by warping of projection images,” British Journal of Radiology, vol. 84, no. 999, pp. 251–264, 2011.
[8]
Y. Wang, S. J. Riederer, and R. L. Ehman, “Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging,” Magnetic Resonance in Medicine, vol. 33, no. 5, pp. 713–719, 1995.
[9]
J.-J. Sonke, L. Zijp, P. Remeijer, and M. van Herk, “Respiratory correlated cone beam CT,” Medical Physics, vol. 32, no. 4, pp. 1176–1186, 2005.
[10]
A. Kavanagh, P. M. Evans, V. N. Hansen, and S. Webb, “Obtaining breathing patterns from any sequential thoracic X-ray image set,” Physics in Medicine and Biology, vol. 54, no. 16, pp. 4879–4888, 2009.
[11]
M. Chen and R. A. Siochi, “Diaphragm motion quantification in megavoltage cone-beam CT projection images,” Medical Physics, vol. 37, no. 5, pp. 2312–2320, 2010.
[12]
I. Vergalasova, J. Cai, and F.-F. Yin, “A novel technique for markerless, self-sorted 4D-CBCT: feasibility study,” Medical Physics, vol. 39, no. 3, pp. 1442–1451, 2012.
[13]
M. B?gel, A. Maier, H. G. Hofmann, J. Hornegger, and R. Fahrig, “Diaphragm tracking in cardiac C-Arm projection data,” in Proceedings of the Bildverarbeitung fur die Medizin (BVM '12), pp. 33–38, Berlin, Germany, 2012.
[14]
M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting 350 with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[15]
A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectification of stereo pairs,” Machine Vision and Applications, vol. 12, no. 1, pp. 16–22, 2000.
[16]
R. I. Hartley and P. Sturm, “Triangulation,” Computer Vision and Image Understanding, vol. 68, no. 2, pp. 146–157, 1997.
[17]
D. Sch?fer, J. Borgert, V. Rasche, and M. Grass, “Motion-compensated and gated cone beam filtered back-projection for 3-D rotational X-ray angiography,” IEEE Transactions on Medical Imaging, vol. 25, no. 7, pp. 898–906, 2006.
[18]
W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui, “Realistic CT simulation using the 4D XCAT phantom,” Medical Physics, vol. 35, no. 8, pp. 3800–3808, 2008.
[19]
A. Maier, H. G. Hofmann, C. Schwemmer, J. Hornegger, A. Keil, and R. Fahrig, “Fast simulation of X-ray projections of spline-based surfaces using an append buffer,” Physics in Medicine & Biology, vol. 57, no. 19, pp. 6193–6210, 2012.
[20]
M. B?gel, A. Maier, H. G. Hofmann, J. Hornegger, and R. Fahrig, “Diaphragm tracking for respiratory motion compensated cardiac C-Arm CT,” in Proceedings of the second international conference on image formation in x-ray computed tomography, pp. 13–16, Salt Lake City, UT, USA, 2012.
[21]
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.