全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Localized FCM Clustering with Spatial Information for Medical Image Segmentation and Bias Field Estimation

DOI: 10.1155/2013/930301

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a novel fuzzy energy minimization method for simultaneous segmentation and bias field estimation of medical images. We first define an objective function based on a localized fuzzy -means (FCM) clustering for the image intensities in a neighborhood around each point. Then, this objective function is integrated with respect to the neighborhood center over the entire image domain to formulate a global fuzzy energy, which depends on membership functions, a bias field that accounts for the intensity inhomogeneity, and the constants that approximate the true intensities of the corresponding tissues. Therefore, segmentation and bias field estimation are simultaneously achieved by minimizing the global fuzzy energy. Besides, to reduce the impact of noise, the proposed algorithm incorporates spatial information into the membership function using the spatial function which is the summation of the membership functions in the neighborhood of each pixel under consideration. Experimental results on synthetic and real images are given to demonstrate the desirable performance of the proposed algorithm. 1. Introduction Medical image segmentation plays an important role in a variety of biomedical-imaging applications, such as the quantification of tissue volumes, diagnosis, localization of pathology, study of anatomical structure, treatment planning, and computer-integrated surgery [1]. However, segmentation of medical images involves three main image-related problems [2]. First, images contain noise that can alter the intensity of a pixel such that its classification becomes uncertain. Second, images exhibit intensity inhomogeneity where the intensity level of a single tissue class varies gradually over the extent of the image. Third, images have finite pixel size and are subject to partial volume averaging where individual pixel volumes contain a mixture of tissue classes so that the intensity of a pixel in the image may not be consistent with any one class. To overcome these problems, many segmentation techniques have been proposed in the past decades, such as the expectation maximization (EM) algorithm [3–5], level set method [6–9], clustering [10–17], and so on. Clustering for image segmentation usually classifies image pixels into -clusters such that members of the same cluster are more similar to one another than to members of other clusters, where the number, , of clusters is usually predefined or set by some validity criterion or a priori knowledge [18]. In the clustering methods, fuzzy -means (FCM) based algorithms have been widely used in

References

[1]  D. Pham, C. Xu, and J. Prince, “Current methods in medical image segmentation,” Annual Review of Biomedical Engineering, vol. 2, pp. 315–317, 2000.
[2]  D. J. Withey and Z. J. Koles, “Medical image segmentation: methods and software,” in Proceedings of the Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging (NFSI&ICFBI '07), pp. 140–143, October 2007.
[3]  W. M. Wells III, W. E. L. Crimson, R. Kikinis, and F. A. Jolesz, “Adaptive segmentation of mri data,” IEEE Transactions on Medical Imaging, vol. 15, no. 4, pp. 429–442, 1996.
[4]  K. van Leemput, F. Maes, D. Vandermeulen, and P. Suetens, “Automated model-based bias field correction of MR images of the brain,” IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 885–896, 1999.
[5]  Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm,” IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001.
[6]  Y. Chen, J. Zhang, and J. Macione, “An improved level set method for brain MR images segmentation and bias correction,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 510–519, 2009.
[7]  L. Wang, C. Li, Q. Sun, D. Xia, and C.-Y. Kao, “Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation,” Computerized Medical Imaging and Graphics, vol. 33, no. 7, pp. 520–531, 2009.
[8]  C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C. Gore, “A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI,” IEEE Transactions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011.
[9]  Y. Chen, J. Zhang, A. Mishra, and J. Yang, “Image segmentation and bias correction via an improved level set method,” Neurocomputing, vol. 74, no. 17, pp. 3520–3530, 2011.
[10]  D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities,” Pattern Recognition Letters, vol. 20, no. 1, pp. 57–68, 1999.
[11]  D. L. Pham and J. L. Prince, “Adaptive fuzzy segmentation of magnetic resonance images,” IEEE Transactions on Medical Imaging, vol. 18, no. 9, pp. 737–752, 1999.
[12]  M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty, “A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data,” IEEE Transactions on Medical Imaging, vol. 21, no. 3, pp. 193–199, 2002.
[13]  A. W.-C. Liew and H. Yan, “An adaptive spatial fuzzy clustering algorithm for 3-D MR image segmentation,” IEEE Transactions on Medical Imaging, vol. 22, no. 9, pp. 1063–1075, 2003.
[14]  D.-Q. Zhang and S.-C. Chen, “A novel kernelized fuzzy c-means algorithm with application in medical image segmentation,” Artificial Intelligence in Medicine, vol. 32, no. 1, pp. 37–50, 2004.
[15]  K.-S. Chuang, H.-L. Tzeng, S. Chen, J. Wu, and T.-J. Chen, “Fuzzy c-means clustering with spatial information for image segmentation,” Computerized Medical Imaging and Graphics, vol. 30, no. 1, pp. 9–15, 2006.
[16]  L. Szilágri, S. Szilágri, and B. Benyó, “Efficent inhomogeneity compensation using fuzzy c-means clustering models,” Computer Methods and Programs in Biomedicine, vol. 108, no. 1, pp. 80–89, 2012.
[17]  C. Li, C. Xu, A. W. Anderson, and J. C. Gore, “MRI tissue classification and bias field estimation based on coherent local intensity clustering: A unified energy minimization framework,” in Proceedings of the 21st International Conference on Information Processing in Medical Imaging (IPMI '09), pp. 288–299, 2009.
[18]  S. Chen and D. Zhang, “Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 4, pp. 1907–1916, 2004.
[19]  U. Vovk, F. Pernu?, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Transactions on Medical Imaging, vol. 26, no. 3, pp. 405–421, 2007.
[20]  L. A. Vese and T. F. Chan, “A multiphase level set framework for image segmentation using the Mumford and Shah model,” International Journal of Computer Vision, vol. 50, no. 3, pp. 271–293, 2002.
[21]  G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York, NY, USA, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133