全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture

DOI: 10.1155/2013/936593

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this paper is to provide the biomedical imaging community with details of a new high resolution contrast imaging approach referred to as “acoustic angiography.” Through the use of dual-frequency ultrasound transducer technology, images acquired with this approach possess both high resolution and a high contrast-to-tissue ratio, which enables the visualization of microvascular architecture without significant contribution from background tissues. Additionally, volumetric vessel-tissue integration can be visualized by using b-mode overlays acquired with the same probe. We present a brief technical overview of how the images are acquired, followed by several examples of images of both healthy and diseased tissue volumes. 3D images from alternate modalities often used in preclinical imaging, contrast-enhanced micro-CT and photoacoustics, are also included to provide a perspective on how acoustic angiography has qualitatively similar capabilities to these other techniques. These preliminary images provide visually compelling evidence to suggest that acoustic angiography may serve as a powerful new tool in preclinical and future clinical imaging. 1. Introduction Blood vessel structure and patency are known to be related to the state and progression of many diseases [1, 2]. Abnormal vessel and vessel network morphologies have been positively correlated to malignancy across species [3, 4]. In preclinical studies of the disease and drug research, there are several noninvasive imaging modalities that can be utilized to visualize blood vessel structure. These are magnetic resonance imaging (MRI), computed tomography (CT), ultrasound, and more recently—photoacoustic imaging. To select one of these imaging methods, researchers must compromise between the variables of system including study cost, data acquisition time, ionizing radiation dose, imaging depth, and image resolution. High-field MRI is the most expensive, requires the longest acquisition times, and requires a dedicated facility for shielding and maintenance. CT is also fairly expensive, bulky, and primarily limited by a high ionizing radiation dose. Ultrasound is the least expensive, the most portable, and provides the fastest image acquisition. Photoacoustic imaging has similar portability to ultrasound and can provide high resolution images of the microvasculature as well as additional functional information (such as blood oxygen saturation), but is the most limited in penetration depth among these modalities. In the past, the reputation of ultrasound has been as a modality with limited

References

[1]  P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005.
[2]  M. Egeblad, E. S. Nakasone, and Z. Werb, “Tumors as organs: complex tissues that interface with the entire organism,” Developmental Cell, vol. 18, no. 6, pp. 884–901, 2010.
[3]  E. Bullitt, M. Ewend, J. Vredenburgh et al., “Computerized assessment of vessel morphological changes during treatment of glioblastoma multiforme: report of a case imaged serially by MRA over four years,” NeuroImage, vol. 47, no. 2, pp. T143–T151, 2009.
[4]  C.-Y. Li, S. Shan, Q. Huang, et al., “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” Journal of the National Cancer Institute, vol. 92, no. 2, pp. 143–147, 2000.
[5]  S. J. Schambach, S. Bag, C. Groden, L. Schilling, and M. A. Brockmann, “Vascular imaging in small rodents using micro-CT,” Methods, vol. 50, no. 1, pp. 26–35, 2010.
[6]  S. E. Ungersma, G. Pacheco, C. Ho et al., “Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis,” Magnetic Resonance in Medicine, vol. 63, no. 6, pp. 1637–1647, 2010.
[7]  G. Korpanty, J. G. Carbon, P. A. Grayburn, J. B. Fleming, and R. A. Brekken, “Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature,” Clinical Cancer Research, vol. 13, no. 1, pp. 323–330, 2007.
[8]  J. W. Xuan, M. Bygrave, H. Jiang et al., “Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power doppler ultrasound,” Cancer Research, vol. 67, no. 6, pp. 2830–2839, 2007.
[9]  A. M. Y. Cheung, A. S. Brown, V. Cucevic et al., “Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-CT following treatment with VEGFR-2 blocking antibodies,” Ultrasound in Medicine and Biology, vol. 33, no. 8, pp. 1259–1268, 2007.
[10]  A. Barua, P. Bitterman, J. M. Bahr et al., “Detection of tumor-associated neoangiogenesis by doppler ultrasonography during early-stage ovarian cancer in laying hens: a preclinical model of human spontaneous ovarian cancer,” Journal of Ultrasound in Medicine, vol. 29, no. 2, pp. 173–182, 2010.
[11]  K. J. Niermann, A. C. Fleischer, J. Huamani et al., “Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography,” Journal of Ultrasound in Medicine, vol. 26, no. 6, pp. 749–756, 2007.
[12]  K. Hoyt, J. M. Warram, H. Umphrey et al., “Determination of breast cancer response to bevacizumab therapy using contrast-enhanced ultrasound and artificial neural networks,” Journal of Ultrasound in Medicine, vol. 29, no. 4, pp. 577–585, 2010.
[13]  D. E. Kruse and K. W. Ferrara, “A new imaging strategy using wideband transient response of ultrasound contrast agents,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 8, pp. 1320–1329, 2005.
[14]  A. Bouakaz, B. J. Krenning, W. B. Vletter, F. J. Ten Cate, and N. De Jong, “Contrast superharmonic imaging: A Feasibility Study,” Ultrasound in Medicine and Biology, vol. 29, no. 4, pp. 547–553, 2003.
[15]  C.-K. Yen, S.-Y. Su, C.-C. Shen, and M.-N. Li, “Dual high-frequency difference excitation for contrast detection,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2164–2176, 2008.
[16]  D. N. Stephens, D. E. Kruse, A. S. Ergun, S. Barnes, X. M. Lu, and K. W. Ferrara, “Efficient array design for sonotherapy,” Physics in Medicine and Biology, vol. 53, no. 14, pp. 3943–3969, 2008.
[17]  R. Gessner, M. Lukacs, M. Lee, E. Cherin, F. S. Foster, and P. A. Dayton, “High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 8, pp. 1772–1781, 2010.
[18]  H. Yuan, T. Schroeder, J. E. Bowsher, L. W. Hedlund, T. Wong, and M. W. Dewhirst, “Intertumoral differences in hypoxia selectivity of the PET imaging agent64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone),” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 989–998, 2006.
[19]  J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Molecular Imaging, vol. 9, no. 2, pp. 87–95, 2010.
[20]  E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Physics in Medicine and Biology, vol. 54, no. 4, pp. 1035–1046, 2009.
[21]  J. Laufer, P. Johnson, E. Zhang, et al., “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” Journal of Biomedical Optics, vol. 17, no. 5, article 056016, 2012.
[22]  S. S. Abdelmoneim, M. Bernier, C. G. Scott et al., “Safety of contrast agent use during stress echocardiography in patients with elevated right ventricular systolic pressure: A Cohort Study,” Circulation, vol. 3, no. 3, pp. 240–248, 2010.
[23]  S. S. Abdelmoneim, M. Bernier, C. G. Scott et al., “Safety of contrast agent use during stress echocardiography. A 4-Year experience from a single-center cohort study of 26,774 Patients,” Journal of the American College of Cardiology, vol. 2, no. 9, pp. 1048–1056, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133