全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Effect of Simplifying Dental Implant Drilling Sequence on Osseointegration: An Experimental Study in Dogs

DOI: 10.1155/2013/230310

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objectives. To test the hypothesis that there would be no differences in osseointegration by reducing the number of drills for site preparation relative to conventional drilling sequence. Methods. Seventy-two implants were bilaterally placed in the tibia of 18 beagle dogs and remained for 1, 3, and 5 weeks. Thirty-six implants were 3.75?mm in diameter and the other 36 were 4.2?mm. Half of the implants of each diameter were placed under a simplified technique (pilot drill?+?final diameter drill) and the other half were placed under conventional drilling where multiple drills of increasing diameter were utilized. After euthanisation, the bone-implant samples were processed and referred to histological analysis. Bone-to-implant contact (BIC) and bone-area-fraction occupancy (BAFO) were assessed. Statistical analyses were performed by GLM ANOVA at 95% level of significance considering implant diameter, time in vivo, and drilling procedure as independent variables and BIC and BAFO as the dependent variables. Results. Both techniques led to implant integration. No differences in BIC and BAFO were observed between drilling procedures as time elapsed in vivo. Conclusions. The simplified drilling protocol presented comparable osseointegration outcomes to the conventional protocol, which proved the initial hypothesis. 1. Introduction Osseointegration has been defined as the intimate contact between bone tissue and implanted biomaterial in the optical microscopy level, and such phenomenon has rendered dental implantology as one of the most successful treatment modalities in both dentistry and medicine [1, 2]. However, while high success rates have been reported (often higher than 90% over a decade), the early failure of the osseointegration has been associated with endogenous factors such as quantity and quality of bone, smoking habits, and host systemic impairment, as well as nutritional status and osteometabolic disorders that may impair bone healing or affect the maintenance of osseointegration. On the other hand, especially in cases where endogenous factors are not present, failure of dental implants has also been attributed to exogenous factors such as implant design (including macro- and microgeometry), surgical technique (excessive surgical trauma), overload, misfit of suprastructures, or surgical site infection [3, 4]. Albrektsson et al. (1981) suggested that there are 6 factors that determine the success of osseointegration, that is, biocompatibility, design, surface, state of the host bed, surgical technique, and loading conditions [5]. Needless to say,

References

[1]  M. Esposito, J. M. Hirsch, U. Lekholm, and P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology,” European Journal of Oral Sciences, vol. 106, no. 1, pp. 527–551, 1998.
[2]  P. I. Br?nemark, R. Adell, U. Breine, B. O. Hansson, J. Lindstr?m, and A. Ohlsson, “Intra-osseous anchorage of dental prostheses. I. Experimental studies,” Scandinavian Journal of Plastic and Reconstructive Surgery, vol. 3, no. 2, pp. 81–100, 1969.
[3]  T. Albrektsson, J. Brunski, and A. Wennerberg, “‘A requiem for the periodontal ligament’ revisited,” International Journal of Prosthodontics, vol. 22, no. 2, pp. 120–122, 2009.
[4]  M. Esposito, J. M. Hirsch, U. Lekholm, and P. Thomsen, “Biological factors contributing to failures of osseointegrated oral implants: (II). Etiopathogenesis,” European Journal of Oral Sciences, vol. 106, no. 3, pp. 721–764, 1998.
[5]  T. Albrektsson, P. I. Branemark, H. A. Hansson, and J. Lindstrom, “Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man,” Acta Orthopaedica Scandinavica, vol. 52, no. 2, pp. 155–170, 1981.
[6]  S. Iyer, C. Weiss, and A. Mehta, “Effects of drill speed on heat production and the rate and quality of bone formation in dental implant osteotomies. Part I: relationship between drill speed and heat production,” International Journal of Prosthodontics, vol. 10, no. 5, pp. 411–414, 1997.
[7]  G. Augustin, S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, and A. Antabak, “Thermal osteonecrosis and bone drilling parameters revisited,” Archives of Orthopaedic and Trauma Surgery, vol. 128, no. 1, pp. 71–77, 2008.
[8]  Y. Reingewirtz, S. Szmukler-Moncler, and B. Senger, “Influence of different parameters on bone heating and drilling time in implantology,” Clinical Oral Implants Research, vol. 8, no. 3, pp. 189–197, 1997.
[9]  M. Sharawy, C. E. Misch, N. Weller, and S. Tehemar, “Heat generation during implant drilling: the significance of motor speed,” Journal of Oral and Maxillofacial Surgery, vol. 60, no. 10, pp. 1160–1169, 2002.
[10]  S. J. Kim, J. Yoo, Y. S. Kim, and S. W. Shin, “Temperature change in pig rib bone during implant site preparation by low-speed drilling,” Journal of Applied Oral Science, vol. 18, no. 5, pp. 522–527, 2010.
[11]  G. E. Chacon, D. L. Bower, P. E. Larsen, E. A. McGlumphy, and F. M. Beck, “Heat production by 3 implant drill systems after repeated drilling and sterilization,” Journal of Oral and Maxillofacial Surgery, vol. 64, no. 2, pp. 265–269, 2006.
[12]  M. Sumer, A. F. Misir, N. T. Telcioglu, A. U. Guler, and M. Yenisey, “Comparison of heat generation during implant drilling using stainless steel and ceramic drills,” Journal of Oral and Maxillofacial Surgery, vol. 69, no. 5, pp. 1350–1354, 2011.
[13]  H. J. Oh, U. M. Wikesj?, H. S. Kang, Y. Ku, T. G. Eom, and K. T. Koo, “Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study,” Clinical Oral Implants Research, vol. 22, no. 7, pp. 722–726, 2011.
[14]  A. Scarano, A. Piattelli, B. Assenza et al., “Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills,” Clinical Implant Dentistry and Related Research, vol. 13, no. 4, pp. 319–323, 2011.
[15]  A. C. Carvalho, T. P. Queiroz, R. Okamoto, R. Margonar, I. R. Garcia Jr., and O. M. Filho, “Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias,” International Journal of Oral and Maxillofacial Implants, vol. 26, no. 6, pp. 1193–1201, 2011.
[16]  I. C. Benington, P. A. Biagioni, J. Briggs, S. Sheridan, and P. J. Lamey, “Thermal changes observed at implant sites during internal and external irrigation,” Clinical Oral Implants Research, vol. 13, no. 3, pp. 293–297, 2002.
[17]  D. Flanagan, “Osteotomy irrigation: is it necessary?” Implant Dentistry, vol. 19, no. 3, pp. 241–249, 2010.
[18]  A. Rashad, A. Kaiser, N. Prochnow, I. Schmitz, E. Hoffmann, and P. Maurer, “Heat production during different ultrasonic and conventional osteotomy preparations for dental implants,” Clinical Oral Implants Research, vol. 22, no. 12, pp. 1361–1365, 2011.
[19]  G. Giro, C. Marin, R. Granato et al., “Effect of drilling technique on the early integration of plateau root form endosteal implants: an experimental study in dogs,” Journal of Oral and Maxillofacial Surgery, vol. 69, no. 8, pp. 2158–2163, 2011.
[20]  C. Marin, R. Granato, M. Suzuki et al., “Biomechanical and histomorphometric analysis of etched and non-etched resorbable blasting media processed implant surfaces: an experimental study in dogs,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 3, no. 5, pp. 382–391, 2010.
[21]  G. Leonard, P. Coelho, I. Polyzois, L. Stassen, and N. Claffey, “A study of the bone healing kinetics of plateau versus screw root design titanium dental implants,” Clinical Oral Implants Research, vol. 20, no. 3, pp. 232–239, 2009.
[22]  G. Augustin, S. Davila, T. Udilljak, T. Staroveski, D. Brezak, and S. Babic, “Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill,” International Orthopaedics, vol. 36, no. 7, pp. 1449–1456, 2012.
[23]  G. M. Reiser and M. Nevins, “The implant periapical lesion: etiology, prevention, and treatment,” Compendium of Continuing Education in Dentistry, vol. 16, no. 8, pp. 768–772, 1995.
[24]  K. Yoshida, K. Uoshima, K. Oda, and T. Maeda, “Influence of heat stress to matrix on bone formation,” Clinical Oral Implants Research, vol. 20, no. 8, pp. 782–790, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133