Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response
Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales. 1. Introduction The last two decades have seen a tremendous level of fundamental research and development into nanotechnology. Recent developments in material science, engineering, biotechnology, and biomedical fields have clearly demonstrated the many potential applications of nanotechnology [1, 2]. The basis of this intense nanotechnology-based research is derived from the fact that nanoscale matter can have significantly different properties than its bulk counterpart [3, 4]. The discovery and investigation of these unknown properties, using new advanced characterization techniques, have the potential to deliver detailed information that can be used to develop many new nanotechnology-based applications. These new characterization techniques have come about from the development of the atomic force microscope (AFM) and the scanning tunnelling microscope (STM) in the 1980s [5]. Both these techniques have given researchers the unprecedented ability to explore and chart the properties of these newly created nanomaterials. These newly discovered nanomaterials have the potential to revolutionize many current pharmaceutical and biomedical applications; and along the way they have the potential to
References
[1]
A. Nouailhat, An Introduction to Nanoscience and Nanotechnology, John Wiley, New York, NY, USA, 2008.
[2]
C. P. Poole Jr. and F. J. Owens, Introduction to Nanotechnology, John Wiley, Hoboken, NJ, USA, 2003.
[3]
G. A. Ozin, A. C. Arsenault, and L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, London, UK, 2005.
[4]
G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, UK, 2004.
[5]
L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Springer, Heidelberg, Germany, 2nd edition, 1998.
[6]
C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon, vol. 41, no. 2, pp. 359–368, 2003.
[7]
C. Bower, O. Zhou, W. Zhu, D. J. Werder, and S. Jin, “Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition,” Applied Physics Letters, vol. 77, no. 17, pp. 2767–2769, 2000.
[8]
K. Itatani, K. Iwafune, F. S. Howell, and M. Aizawa, “Preparation of various calcium-phosphate powders by ultrasonic spray freeze-drying technique,” Materials Research Bulletin, vol. 35, no. 4, pp. 575–585, 2000.
[9]
G. E. Poinern, R. K. Brundavanam, N. Mondinos, and Z. T. Jiang, “Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method,” Ultrasonics Sonochemistry, vol. 16, no. 4, pp. 469–474, 2009.
[10]
E. Camponeschi, J. Walker, H. Garmestani, and R. Tannenbaum, “Surfactant effects on the particle size of iron (III) oxides formed by sol-gel synthesis,” Journal of Non-Crystalline Solids, vol. 354, no. 34, pp. 4063–4069, 2008.
[11]
K. M. S. Khalil and S. A. Makhlouf, “High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol-gel process,” Applied Surface Science, vol. 254, no. 13, pp. 3767–3773, 2008.
[12]
W. M. Becker, L. J. Kleinsmith, and J. Hardin, The World of the Cell, Pearson, Benjamin, Cummings, 6th edition, 2006.
[13]
E. K. F. Yim and K. W. Leong, “Significance of synthetic nanostructures in dictating cellular response,” Nanomedicine, vol. 1, no. 1, pp. 10–21, 2005.
[14]
C. Rappaport, “Small aspect of the growth of mammalian cells on glass surfaces,” in The Chemistry of Bio Surfaces, M. L. Hair, Ed., pp. 449–489, Marcel Dekker, New York, NY, USA, 1972.
[15]
E. A. Volger, “Interfacial chemistry in biomaterials science,” in Wettability, J. C. Berg, Ed., pp. 184–250, Marcel Dekker, New York, NY, USA, 1993.
[16]
F. Grinnell, “Cellular adhesiveness and extracellular substrata,” International Review of Cytology, vol. 53, pp. 65–144, 1978.
[17]
E. M. Christenson, K. S. Anseth, J. J. J. P. Van den Beucken et al., “Nanobiomaterial applications in orthopedics,” Journal of Orthopaedic Research, vol. 25, no. 1, pp. 11–22, 2007.
[18]
T. J. Webster and T. A. Smith, “Increased osteoblast function on PLGA composites containing nanophase titania,” Journal of Biomedical Materials Research A, vol. 74, no. 4, pp. 677–686, 2005.
[19]
C. Yao, V. Perla, J. L. McKenzie, E. B. Slamovich, and T. J. Webster, “Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 68–73, 2005.
[20]
T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Enhanced functions of osteoblasts on nanophase ceramics,” Biomaterials, vol. 21, no. 17, pp. 1803–1810, 2000.
[21]
R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993.
[22]
J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, “Nanotechnology in drug delivery and tissue engineering: from discovery to applications,” Nano Letters, vol. 10, no. 9, pp. 3223–3230, 2010.
[23]
A. Khademhosseini, J. P. Vacanti, and R. Langer, “Progress in tissue,” Scientific American, vol. 300, no. 5, pp. 64–71, 2009.
[24]
L. G. Parkinson, N. L. Giles, K. F. Adcroft, M. W. Fear, F. M. Wood, and G. E. Poinern, “The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair,” Tissue Engineering A, vol. 15, no. 12, pp. 3753–3763, 2009.
[25]
F. Yang, W. L. Neeley, M. J. Moore, J. M. Karp, A. Shukla, and R. Langer, “Tissue engineering: the therapeutic strategy of the twenty-first century,” in Nanotechnology and Tissue Engineering: The Scaffold, C. T. Laurencin and L. S. Nair, Eds., pp. 3–24, Taylor & Francis Group, LLC, Boca Raton, Fla, USA, 2008.
[26]
M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nature Biotechnology, vol. 23, no. 1, pp. 47–55, 2005.
[27]
C. Liu, Z. Xia, and J. T. Czernuszka, “Design and development of three dimensional scaffolds for tissue engineering,” Chemical Engineering Research and Design, vol. 85, no. 7, pp. 1051–1064, 2007.
[28]
R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature, vol. 428, no. 6982, pp. 487–492, 2004.
[29]
R. G. Thakar, Q. Cheng, S. Patel et al., “Cell-shape regulation of smooth muscle cell proliferation,” Biophysical Journal, vol. 96, no. 8, pp. 3423–3432, 2009.
[30]
A. S. G. Curtis and P. Clark, “The effects of topographic and mechanical properties of materials on cell behavior,” Critical Reviews in Biocompatibility, vol. 5, no. 4, pp. 343–362, 1990.
[31]
B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada, “Transmembrane extracellular matrix-cytoskeleton crosstalk,” Nature Reviews Molecular Cell Biology, vol. 2, no. 11, pp. 793–805, 2001.
[32]
M. M. Stevens and J. H. George, “Exploring and engineering the cell surface interface,” Science, vol. 310, no. 5751, pp. 1135–1138, 2005.
[33]
M. Goldberg, R. Langer, and X. Jia, “Nanostructured materials for applications in drug delivery and tissue engineering,” Journal of Biomaterials Science, Polymer Edition, vol. 18, no. 3, pp. 241–268, 2007.
[34]
E. D. Hay, Cell Biology of Extracellular Matrix, Plenum Press, New York, NY, USA, 1991.
[35]
J. J. Norman and T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 89–101, 2006.
[36]
R. V. Shevchenko, S. L. James, and S. E. James, “A review of tissue-engineered skin bioconstructs available for skin reconstruction,” Journal of the Royal Society Interface, vol. 7, no. 43, pp. 229–258, 2010.
[37]
S. Oh, K. S. Brammer, Y. S. Julie-Li, et al., “Stem cell fate dictated solely by altered nano-tube dimension,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2130–2135, 2009.
[38]
R. G. Harrison, “On the stereotropism of embryonic cells,” Science, vol. 34, no. 870, pp. 279–281, 1911.
[39]
P. Weiss, “In vitro experiments on the factors determining the course of the outgrowing nerve fibre,” Journal of Experimental Zoology, vol. 68, pp. 393–448, 1934.
[40]
P. Weiss, “Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organisation,” Journal of Experimental Zoology, vol. 100, pp. 353–386, 1945.
[41]
C. Allmeling, A. Jokuszies, K. Reimers, S. Kall, and P. M. Vogt, “Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit,” Journal of Cellular and Molecular Medicine, vol. 10, no. 3, pp. 770–777, 2006.
[42]
J. J. Norman, J. M. Collins, S. Sharma, B. Russell, and T. A. Desai, “Microstructures in 3D biological gels affect cell proliferation,” Tissue Engineeringc A, vol. 14, no. 3, pp. 379–390, 2008.
[43]
R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002.
[44]
“Classes of materials used within the body and implantation effects: handbook of test methods to enable the generation of a materials biocompatibility index,” University of Liverpool, United Kingdom, 17–26, 1998.
[45]
F. H. Silver, Scope and Markets for Medical Implants: Biomaterials, Medical Devices and Tissue Engineering an Integrated Approach, Chapman and Hall, London, UK, 1994, Silver F. H. Editor.
[46]
L. Yang and L. M. Zhang, “Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources,” Carbohydrate Polymers, vol. 76, no. 3, pp. 349–361, 2009.
[47]
V. R. Sinha and R. Kumria, “Polysaccharides in colon-specific drug delivery,” International Journal of Pharmaceutics, vol. 224, no. 1-2, pp. 19–38, 2001.
[48]
G. Crini, “Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment,” Progress in Polymer Science, vol. 30, no. 1, pp. 38–70, 2005.
[49]
A. Kanazawa and M. Suzuki, “Solid-state polycondensation of natural aldopentoses and 6-deoxyaldohexoses. Facile preparation of highly branched polysaccharide,” Polymer, vol. 47, no. 1, pp. 176–183, 2006.
[50]
R. Sun, J. M. Fang, A. Goodwin, J. M. Lawther, and A. J. Bolton, “Fractionation and characterization of polysaccharides from abaca fibre,” Carbohydrate Polymers, vol. 37, no. 4, pp. 351–359, 1998.
[51]
M. N. V. Ravi Kumar, “A review of chitin and chitosan applications,” Reactive and Functional Polymers, vol. 46, no. 1, pp. 1–27, 2000.
[52]
X. Wang, Y. Du, J. Luo, B. Lin, and J. F. Kennedy, “Chitosan/organic rectorite nanocomposite films: structure, characteristic and drug delivery behaviour,” Carbohydrate Polymers, vol. 69, no. 1, pp. 41–49, 2007.
[53]
J. M. Dang and K. W. Leong, “Natural polymers for gene delivery and tissue engineering,” Advanced Drug Delivery Reviews, vol. 58, no. 4, pp. 487–499, 2006.
[54]
M. L. Lorenzo-Lamosa, C. Remu?án-López, J. L. Vila-Jato, and M. J. Alonso, “Design of microencapsulated chitosan microspheres for colonic drug delivery,” Journal of Controlled Release, vol. 52, no. 1-2, pp. 109–118, 1998.
[55]
M. George and T. E. Abraham, “Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review,” Journal of Controlled Release, vol. 114, no. 1, pp. 1–14, 2006.
[56]
D. Thacharodi and K. P. Rao, “Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride,” Biomaterials, vol. 16, no. 2, pp. 145–148, 1995.
[57]
M. Halbleib, T. Skurk, C. De Luca, D. Von Heimburg, and H. Hauner, “Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds,” Biomaterials, vol. 24, no. 18, pp. 3125–3132, 2003.
[58]
J. Jagur-Grodzinski, “Biomedical application of functional polymers,” Reactive and Functional Polymers, vol. 39, no. 2, pp. 99–138, 1999.
[59]
M. G. Cascone, B. Sim, and S. Downes, “Blends of synthetic and natural polymers as drug delivery systems for growth hormone,” Biomaterials, vol. 16, no. 7, pp. 569–574, 1995.
[60]
K. Kafedjiiski, R. K. R. Jetti, F. F?ger et al., “Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery,” International Journal of Pharmaceutics, vol. 343, no. 1-2, pp. 48–58, 2007.
[61]
S. Jockenhoevel, G. Zund, S. P. Hoerstrup et al., “Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering,” European Journal of Cardio-Thoracic Surgery, vol. 19, no. 4, pp. 424–430, 2001.
[62]
E. A. Ryan, L. F. Mockros, A. M. Stern, and L. Lorand, “Influence of a natural and a synthetic inhibitor of factor XIIIa on fibrin clot rheology,” Biophysical Journal, vol. 77, no. 5, pp. 2827–2836, 1999.
[63]
T. H. Chun, K. B. Hotary, F. Sabeh, A. R. Saltiel, E. D. Allen, and S. J. Weiss, “A pericellular collagenase directs the 3-dimensional development of white adipose tissue,” Cell, vol. 125, no. 3, pp. 577–591, 2006.
[64]
N. T. Dai, M. R. Williamson, N. Khammo, E. F. Adams, and A. G. A. Coombes, “Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin,” Biomaterials, vol. 25, no. 18, pp. 4263–4271, 2004.
[65]
T. Sato, G. Chen, T. Ushida et al., “Evaluation of PLLA-collagen hybrid sponge as a scaffold for cartilage tissue engineering,” Materials Science and Engineering C, vol. 24, no. 3, pp. 365–372, 2004.
[66]
S. Agarwal, J. H. Wendorff, and A. Greiner, “Progress in the field of electro-spinning for tissue engineering applications,” Advanced Materials, vol. 21, no. 32-33, pp. 3343–3351, 2009.
[67]
Y. Dong and S. S. Feng, “Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs,” Biomaterials, vol. 25, no. 14, pp. 2843–2849, 2004.
[68]
X. Zheng, B. Kan, M. Gou et al., “Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro,” International Journal of Pharmaceutics, vol. 386, no. 1-2, pp. 262–267, 2010.
[69]
J. Chen, B. Tian, X. Yin et al., “Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems,” Journal of Biotechnology, vol. 130, no. 2, pp. 107–113, 2007.
[70]
H. Kranz and R. Bodmeier, “Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles,” European Journal of Pharmaceutical Sciences, vol. 34, no. 2-3, pp. 164–172, 2008.
[71]
J. M. Kanczler, P. J. Ginty, J. J. A. Barry et al., “The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation,” Biomaterials, vol. 29, no. 12, pp. 1892–1900, 2008.
[72]
L. Rimondini, N. Nicoli-Aldini, M. Fini, G. Guzzardella, M. Tschon, and R. Giardino, “In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 99, no. 2, pp. 148–154, 2005.
[73]
C. F. L. Chu, A. Lu, M. Liszkowski, and R. Sipehia, “Enhanced growth of animal and human endothelial cells on biodegradable polymers,” Biochimica et Biophysica Acta, vol. 1472, no. 3, pp. 479–485, 1999.
[74]
L. Calandrelli, B. Immirzi, M. Malinconico, M. G. Volpe, A. Oliva, and F. Della Ragione, “Preparation and characterisation of composites based on biodegradable polymers for in vivo application,” Polymer, vol. 41, no. 22, pp. 8027–8033, 2000.
[75]
Z. Wang, S. Wang, Y. Marois, R. Guidoin, and Z. Zhang, “Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue,” Biomaterials, vol. 26, no. 35, pp. 7387–7401, 2005.
[76]
A. Aubert-Pou?ssel, M. C. Venier-Julienne, A. Clavreul et al., “In vitro study of GDNF release from biodegradable PLGA microspheres,” Journal of Controlled Release, vol. 95, no. 3, pp. 463–475, 2004.
[77]
M. Qiao, D. Chen, X. Ma, and Y. Liu, “Injectable biodegradable temperature responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels,” International Journal of Pharmaceutics, vol. 294, no. 1- 2, pp. 103–112, 2005.
[78]
J. J. Lee, S. G. Lee, J. C. Park, Y. I. Yang, and J. K. Kim, “Investigation on biodegradable PLGA scaffold with various pore size structure for skin tissue engineering,” Current Applied Physics, vol. 7, no. 1, pp. e37–e40, 2007.
[79]
H. S. Yoo and T. G. Park, “Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer,” Journal of Controlled Release, vol. 70, no. 1-2, pp. 63–70, 2001.
[80]
M. Todo, S. D. Park, T. Takayama, and K. Arakawa, “Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends,” Engineering Fracture Mechanics, vol. 74, no. 12, pp. 1872–1883, 2007.
[81]
F. Rezgui, M. Swistek, J. M. Hiver, C. G'Sell, and T. Sadoun, “Deformation and damage upon stretching of degradable polymers (PLA and PCL),” Polymer, vol. 46, no. 18, pp. 7370–7385, 2005.
[82]
B. Li, J. Yu, J. Jung, and M. Ree, “Amidolysis of some biodegradable polymers,” Polymer Degradation and Stability, vol. 65, no. 1, pp. 161–163, 1999.
[83]
Y. Iwasaki, S. I. Sawada, K. Ishihara, G. Khang, and H. B. Lee, “Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend,” Biomaterials, vol. 23, no. 18, pp. 3897–3903, 2002.
[84]
Y. Li, J. Nothnagel, and T. Kissel, “Biodegradable brush-like graft polymers from poly(D,L-lactide) or poly(D,L-lactide-co-glycolide) and charge-modified, hydrophilic dextrans as backbone—synthesis, characterization and in vitro degradation properties,” Polymer, vol. 38, no. 25, pp. 6197–6206, 1997.
[85]
Y. C. Wang, M. C. Lin, D. M. Wang, and H. J. Hsieh, “Fabrication of a novel porous PGA-chitosan hybrid matrix for tissue engineering,” Biomaterials, vol. 24, no. 6, pp. 1047–1057, 2003.
[86]
C. Y. Hsieh, S. P. Tsai, D. M. Wang, Y. N. Chang, and H. J. Hsieh, “Preparation of γ-PGA/chitosan composite tissue engineering matrices,” Biomaterials, vol. 26, no. 28, pp. 5617–5623, 2005.
[87]
K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18, pp. 3413–3431, 2006.
[88]
J. Kreuter, “Nanoparticulate systems for brain delivery of drugs,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 65–81, 2001.
[89]
M. L. Han and A. M. Lowman, “Biodegradable nanoparticles for drug delivery and targeting,” Current Opinion in Solid State & Materials Science, vol. 6, no. 4, pp. 319–327, 2002.
[90]
J. J. Blaker, J. C. Knowles, and R. M. Day, “Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery,” Acta Biomaterialia, vol. 4, no. 2, pp. 264–272, 2008.
[91]
R. Y. Kannan, H. J. Salacinski, K. M. Sales, P. E. Butler, and A. M. Seifalian, “The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study,” Cell Biochemistry and Biophysics, vol. 45, no. 2, pp. 129–136, 2006.
[92]
J. Raghunath, H. Zhang, M. J. Edirisinghe, A. Darbyshire, P. E. Butler, and A. M. Seifalian, “A new biodegradable nanocomposite based on polyhedral oligomeric silsesquioxane nanocages: cytocompatibility and investigation into electrohydrodynamic jet fabrication techniques for tissue-engineered scaffolds,” Biotechnology and Applied Biochemistry, vol. 52, no. 1, pp. 1–8, 2009.
[93]
R. Y. Kannan, H. J. Salacinski, M. Odlyha, P. E. Butler, and A. M. Seifalian, “The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study,” Biomaterials, vol. 27, no. 9, pp. 1971–1979, 2006.
[94]
H. Ghanbari, A. G. Kidane, G. Burriesci, B. Ramesh, A. Darbyshire, and A. M. Seifalian, “The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve,” Acta Biomaterialia, vol. 6, no. 11, pp. 4249–4260, 2010.
[95]
H. Ghanbari, A. de Mel, and A. M. Seifalian, “Cardiovascular applications of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons,” International Journal of Nanomedicine, vol. 6, pp. 775–786, 2011.
[96]
K. Tanaka, K. Inafuku, K. Naka, and Y. Chujo, “Enhancement of entrapping ability of dendrimers by a cubic silsesquioxane core,” Organic and Biomolecular Chemistry, vol. 6, no. 21, pp. 3899–3901, 2008.
[97]
S. Ramakrishna, M. Ramalingam, T. S. Sampath Kumar, and W. O. Soboyejo, “Recent trends in biomaterials,” in Biomaterials: A Nano Approach, pp. 22–27, CRC Press, Boca Raton, Fla, USA, 1st edition, 2010.
[98]
R. S. Greco, F. B. Prinz, R. L. Smith, and editors, Nanoscale Technology in Biological Systems, CRC Press, Boca Raton, Fla, USA, 1st edition, 2005.
[99]
M. G. Lines, “Nanomaterials for practical functional uses,” Journal of Alloys and Compounds, vol. 449, no. 1- 2, pp. 242–245, 2008.
[100]
S. K. Misra, D. Mohn, T. J. Brunner et al., “Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites,” Biomaterials, vol. 29, no. 12, pp. 1750–1761, 2008.
[101]
S. D. Koutsostathis, G. A. Tsakotos, I. Papakostas, and G. A. Macheras, “Biological processes at bone—porous tantalum interface,” Journal of Orthopaedic, vol. 6, no. 4, pp. e3–e11, 2009.
[102]
J. D. Bobyn, G. J. Wilson, and D. C. MacGregor, “Effect of pore size on the peel strength of attachment of fibrous tissue to porous-surfaced implants,” Journal of Biomedical Materials Research, vol. 16, no. 5, pp. 571–584, 1982.
[103]
J. D. Bobyn, K. K. Toh, S. A. Hacking, M. Tanzer, and J. J. Krygier, “Tissue response to porous tantalum acetabular cups: a canine model,” Journal of Arthroplasty, vol. 14, no. 3, pp. 347–354, 1999.
[104]
S. A. Hacking, J. D. Bobyn, K. K. Toh, M. Tanzer, and J. J. Krygier, “Fibrous tissue in growth and attachment to porous tantalum,” Journal of Biomedical Materials Research A, vol. 52, no. 4, pp. 631–638, 2000.
[105]
A. Khalil, C. Aponte, R. Zhang et al., “Image analysis of soft-tissue in-growth and attachment into highly porous alumina ceramic foam metals,” Medical Engineering and Physics, vol. 31, no. 7, pp. 775–783, 2009.
[106]
M. Karlsson, A. Johansson, L. Tang, and M. Boman, “Nanoporous aluminium oxide affects neutrophil behaviour,” Microscopy Research and Technique, vol. 63, no. 5, pp. 259–265, 2004.
[107]
K. C. Popat, K. I. Chalvanichkul, G. L. Barnes, T. J. Latempa, C. A. Grimes, and T. A. Desai, “Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces,” Journal of Biomedical Materials Research A, vol. 80, no. 4, pp. 955–964, 2007.
[108]
F. M. Veronese, O. Schiavon, G. Pasut et al., “PEG-doxorubicin conjugates: influence of polymer structure on drug release, in vitro cytotoxicity, biodistribution, and antitumor activity,” Bioconjugate Chemistry, vol. 16, no. 4, pp. 775–784, 2005.
[109]
H. L. Wong, A. M. Rauth, R. Bendayan et al., “A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells,” Pharmaceutical Research, vol. 23, no. 7, pp. 1574–1585, 2006.
[110]
M. D. Timmer, H. Shin, R. A. Horch, C. G. Ambrose, and A. G. Mikos, “In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products,” Biomacromolecules, vol. 4, no. 4, pp. 1026–1033, 2003.
[111]
J. M. Anderson, A. Rodriguez, and D. T. Chang, “Foreign body reaction to biomaterials,” Seminars in Immunology, vol. 20, no. 2, pp. 86–100, 2008.
[112]
E. Lamers, F. Walboomers, M. Domanski, et al., “In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates,” Nanomedicine, Nanotechnology, Biology and Medicine, vol. 8, pp. 308–317, 2012.
[113]
B. M. Gumbiner, “Cell adhesion: the molecular basis of tissue architecture and morphogenesis,” Cell, vol. 84, no. 3, pp. 345–357, 1996.
[114]
R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman, and P. F. Nealey, “Effects of synthetic micro- and nano-structured surfaces on cell behavior,” Biomaterials, vol. 20, no. 6, pp. 573–588, 1999.
[115]
S. Huang and D. E. Ingber, “The structural and mechanical complexity of cell-growth control,” Nature Cell Biology, vol. 1, no. 5, pp. E131–138, 1999.
[116]
E. A. O'Toole, “Extracellular matrix and keratinocyte migration,” Clinical and Experimental Dermatology, vol. 26, no. 6, pp. 525–530, 2001.
[117]
R. O. Hynes, “The extracellular matrix: not just pretty fibrils,” Science, vol. 326, no. 5957, pp. 1216–1219, 2009.
[118]
E. Lavik and R. Langer, “Tissue engineering: current state and perspectives,” Applied Microbiology and Biotechnology, vol. 65, no. 1, pp. 1–8, 2004.
[119]
B. C. Isenberg, P. A. DiMilla, M. Walker, S. Kim, and J. Y. Wong, “Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength,” Biophysical Journal, vol. 97, no. 5, pp. 1313–1322, 2009.
[120]
J. R. Tse and A. J. Engler, “Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate,” PLoS ONE, vol. 6, no. 1, Article ID e15978, 2011.
[121]
L. E. McNamara, R. J. McMurray, M. J. P. Biggs, F. Kantawong, R. O. C. Oreffo, and M. J. Dalby, “Nanotopographical control of stem cell differentiation,” Journal of Tissue Engineering, Article ID 120623, pp. 1–13, 2010.
[122]
K. A. Lazopoulos and D. Stamenovi?, “Durotaxis as an elastic stability phenomenon,” Journal of Biomechanics, vol. 41, no. 6, pp. 1289–1294, 2008.
[123]
A. S. Rowlands, P. A. George, and J. J. Cooper-White, “Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation,” American Journal of Physiology, vol. 295, no. 4, pp. C1037–C1044, 2008.
[124]
A. M. Kloxin, J. A. Benton, and K. S. Anseth, “In situ elasticity modulation with dynamic substrates to direct cell phenotype,” Biomaterials, vol. 31, no. 1, pp. 1–8, 2010.
[125]
E. C. Peters, M. Petro, F. Svec, and J. M. J. Fréchet, “Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry,” Analytical Chemistry, vol. 70, no. 11, pp. 2288–2295, 1998.
[126]
T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, “Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients,” Biomaterials, vol. 28, no. 13, pp. 2175–2182, 2007.
[127]
D. C. Miller, A. Thapa, K. M. Haberstroh, and T. J. Webster, “Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features,” Biomaterials, vol. 25, no. 1, pp. 53–61, 2004.
[128]
M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature, vol. 410, no. 6830, pp. 796–799, 2001.
[129]
S. Kim and P. A. Coulombe, “Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm,” Genes and Development, vol. 21, no. 13, pp. 1581–1597, 2007.
[130]
A. S. Andersson, F. B?ckhed, A. Von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003.
[131]
B. Knox, P. Ladiges, and B. Evans, Biology, McGraw-Hill, Sydney, Australia, 1994.
[132]
C. J. Bettinger, R. Langer, and J. T. Borenstein, “Engineering substrate topography at the Micro- and nanoscale to control cell function,” Angewandte Chemie, vol. 48, no. 30, pp. 5406–5415, 2009.
[133]
N. J. Sniadecki, R. A. Desai, S. A. Ruiz, and C. S. Chen, “Nanotechnology for cell-substrate interactions,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 59–74, 2006.
[134]
L. Wang and R. L. Carrier, “Biomimetic topography: bioinspired cell culture substrates and scaffolds,” in Advances in Biomimetics, A. George, Ed., chapter 21, pp. 454–472, INTECH, Vienna, Austria, 2011.
[135]
E. Martínez, E. Engel, J. A. Planell, and J. Samitier, “Effects of artificial micro- and nano-structured surfaces on cell behaviour,” Annals of Anatomy, vol. 191, no. 1, pp. 126–135, 2009.
[136]
T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, “Decellularization of tissues and organs,” Biomaterials, vol. 27, no. 19, pp. 3675–3683, 2006.
[137]
S. F. Badylak, D. Taylor, and K. Uygun, “Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds,” Annual Review of Biomedical Engineering, vol. 13, pp. 27–53, 2011.
[138]
D. W. Courtman, C. A. Pereira, V. Kashef, D. McComb, J. M. Lee, and G. J. Wilson, “Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction,” Journal of Biomedical Materials Research, vol. 28, no. 6, pp. 655–666, 1994.
[139]
C. E. Schmidt and J. M. Baier, “Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering,” Biomaterials, vol. 21, no. 22, pp. 2215–2231, 2000.
[140]
S. L. M. Dahl, J. Koh, V. Prabhakar, and L. E. Niklason, “Decellularized native and engineered arterial scaffolds for transplantation,” Cell Transplantation, vol. 12, no. 6, pp. 659–666, 2003.
[141]
B. S. Conklin, E. R. Richter, K. L. Kreutziger, D. S. Zhong, and C. Chen, “Development and evaluation of a novel decellularized vascular xenograft,” Medical Engineering and Physics, vol. 24, no. 3, pp. 173–183, 2002.
[142]
M. T. Kasimir, E. Rieder, G. Seebacher et al., “Comparison of different decellularization procedures of porcine heart valves,” International Journal of Artificial Organs, vol. 26, no. 5, pp. 421–427, 2003.
[143]
R. W. Grauss, M. G. Hazekamp, F. Oppenhuizen, C. J. Van Munsteren, A. C. Gittenberger-De Groot, and M. C. DeRuiter, “Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods,” European Journal of Cardio-Thoracic Surgery, vol. 27, no. 4, pp. 566–571, 2005.
[144]
F. Chen, J. J. Yoo, and A. Atala, “Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair,” Urology, vol. 54, no. 3, pp. 407–410, 1999.
[145]
D. O. Freytes, S. F. Badylak, T. J. Webster, L. A. Geddes, and A. E. Rundell, “Biaxial strength of multilaminated extracellular matrix scaffolds,” Biomaterials, vol. 25, no. 12, pp. 2353–2361, 2004.
[146]
S. F. Badylak, G. C. Lantz, A. Coffey, and L. A. Geddes, “Small intestinal submucosa as a large diameter vascular graft in the dog,” Journal of Surgical Research, vol. 47, no. 1, pp. 74–80, 1989.
[147]
M. S. Sacks and D. C. Gloeckner, “Quantification of the fiber architecture and biaxial mechanical behaviour of porcine intestinal submucosa,” Journal of Biomedical Materials Research, vol. 46, pp. 1–10, 1999.
[148]
P. Lin, W. C. W. Chan, S. F. Badylak, and S. N. Bhatia, “Assessing porcine liver-derived biomatrix for hepatic tissue engineering,” Tissue Engineering, vol. 10, no. 7-8, pp. 1046–1053, 2004.
[149]
B. E. Uygun, A. Soto-Gutierrez, H. Yagi et al., “Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix,” Nature Medicine, vol. 16, no. 7, pp. 814–820, 2010.
[150]
R. N. Chen, H. O. Ho, Y. T. Tsai, and M. T. Sheu, “Process development of an acellular dermal matrix (ADM) for biomedical applications,” Biomaterials, vol. 25, no. 13, pp. 2679–2686, 2004.
[151]
T. H. Petersen, E. A. Calle, L. Zhao et al., “Tissue-engineered lungs for in vivo implantation,” Science, vol. 329, no. 5991, pp. 538–541, 2010.
[152]
H. C. Ott, T. S. Matthiesen, S. K. Goh et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart,” Nature Medicine, vol. 14, no. 2, pp. 213–221, 2008.
[153]
E. Stoffels, W. W. Stoffels, and G. M. W. Kroesen, “Plasma chemistry and surface processes of negative ions,” Plasma Sources Science and Technology, vol. 10, no. 2, pp. 311–317, 2001.
[154]
D. M. Brunette, G. S. Kenner, and T. R. Gould, “Grooved titanium surfaces orient growth and migration of cells from human gingival explants,” Journal of Dental Research, vol. 62, no. 10, pp. 1045–1048, 1983.
[155]
C. L. Randall, E. Gultepe, and D. H. Gracias, “Self-folding devices and materials for biomedical applications,” Trends in Biotechnology, vol. 30, no. 3, pp. 138–146, 2011.
[156]
A. J. Birnbaum and A. Pique, “Laser induced extra-planar propulsion for three dimensional microfabrication,” Applied Physics Letters, vol. 98, pp. 134101–134106, 2011.
[157]
R. Nielson, B. Kaehr, and J. B. Shear, “Microreplication and design of biological architectures using dynamic-mask multiphoton lithography,” Small, vol. 5, no. 1, pp. 120–125, 2009.
[158]
D. Liang, B. S. Hsiao, and B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications,” Advanced Drug Delivery Reviews, vol. 59, no. 14, pp. 1392–1412, 2007.
[159]
W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, “Electrospun nanofibrous structure: a novel scaffold for tissue engineering,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 613–621, 2002.
[160]
M. Schindler, I. Ahmed, J. Kamal et al., “A synthetic nanofibrillar matrix promotes in vivo-like organization and morphogenesis for cells in culture,” Biomaterials, vol. 26, no. 28, pp. 5624–5631, 2005.
[161]
Y. Hu, D. W. Grainger, S. R. Winn, and J. O. Hollinger, “Fabrication of poly(α-hydroxy acid) foam scaffolds using multiple solvent systems,” Journal of Biomedical Materials Research, vol. 59, no. 3, pp. 563–572, 2002.
[162]
K. W. Chun, K. C. Cho, S. H. Kim, J. H. Jeong, and T. G. Park, “Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method,” Journal of Biomaterials Science, Polymer Edition, vol. 15, no. 11, pp. 1341–1353, 2004.
[163]
K. Whang, C. H. Thomas, K. E. Healy, and G. Nuber, “A novel method to fabricate bioabsorbable scaffolds,” Polymer, vol. 36, no. 4, pp. 837–842, 1995.
[164]
X. Liu, J. Y. Lim, H. J. Donahue, R. Dhurjati, A. M. Mastro, and E. A. Vogler, “Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: phenotypic and genotypic responses observed in vitro,” Biomaterials, vol. 28, no. 31, pp. 4535–4550, 2007.
[165]
B. G. Keselowsky, D. M. Collard, and A. J. García, “Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion,” Journal of Biomedical Materials Research A, vol. 66, no. 2, pp. 247–259, 2003.
[166]
P. X. Ma, “Biomimetic materials for tissue engineering,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 184–198, 2008.
[167]
G. Cook, P. L. Timms, and C. G?ltner-Spickermann, “Exact replication of biological structures by chemical vapor deposition of silica,” Angewandte Chemie, vol. 42, no. 5, pp. 557–559, 2003.
[168]
J. Park, S. Bauer, K. Von Der Mark, and P. Schmuki, “Nanosize and vitality: TiO2 nanotube diameter directs cell fate,” Nano Letters, vol. 7, no. 6, pp. 1686–1691, 2007.
[169]
G. E. J. Poinern, N. Ali, and D. Fawcett, “Progress in nano-engineered anodic aluminium oxide membrane development,” Materials, vol. 4, pp. 487–526, 2011.
[170]
C. A. Pfluger, D. D. Burkey, L. Wang, B. Sun, K. S. Ziemer, and R. L. Carrier, “Biocompatibility of plasma enhanced chemical vapor deposited poly(2-hydroxyethyl methacrylate) films for biomimetic replication of the intestinal basement membrane,” Biomacromolecules, vol. 11, no. 6, pp. 1579–1584, 2010.
[171]
M. D. Rosenberg, “Long-range interactions between cell and substratum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 48, pp. 1342–1349, 1962.
[172]
M. D. Rosenberg, “Cell guidance by alterations in monomolecular films,” Science, vol. 139, no. 3553, pp. 411–412, 1963.
[173]
P. Clark, P. Connolly, and A. S. G. Curtis, “Topographical control of cell behaviour. I. Simple step cues,” Development, vol. 99, no. 3, pp. 439–448, 1987.
[174]
P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Topographical control of cell behaviour: II. multiple grooved substrata,” Development, vol. 108, no. 4, pp. 635–644, 1990.
[175]
L. Chou, J. D. Firth, V. J. Uitto, and D. M. Brunette, “Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts,” Journal of Cell Science, vol. 108, no. 4, pp. 1563–1573, 1995.
[176]
B. Wójciak-Stothard, A. Curtis, W. Monaghan, K. Macdonald, and C. Wilkinson, “Guidance and activation of murine macrophages by nanometric scale topography,” Experimental Cell Research, vol. 223, no. 2, pp. 426–435, 1996.
[177]
F. J. O'Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, vol. 26, no. 4, pp. 433–441, 2005.
[178]
C. S. Ranucci and P. V. Moghe, “Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density,” Journal of Biomedical Materials Research, vol. 54, no. 2, pp. 149–161, 2001.
[179]
J. R. McMillan, M. Akiyama, M. Tanaka et al., “Small-diameter porous poly (ε-caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells,” Tissue Engineering, vol. 13, no. 4, pp. 789–798, 2007.
[180]
M. J. Dalby, M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10?nm high nano-topography and fibroblast filopodia,” Cell Biology International, vol. 28, no. 3, pp. 229–236, 2004.
[181]
G. A. Dunn and J. P. Heath, “A new hypothesis of contact guidance in tissue cells,” Experimental Cell Research, vol. 101, no. 1, pp. 1–14, 1976.
[182]
P. T. Ohara and R. C. Buck, “Contact guidance in vitro. A light, transmission, and scanning electron microscopic study,” Experimental Cell Research, vol. 121, no. 2, pp. 235–249, 1979.
[183]
G. A. Dunn, “Contact guidance of cultured tissue cells: a survey of potentially relevant properties of the substratum,” in Cell Behavior, R. Bellairs, A. Curtis, and G. Dunn, Eds., Cambridge University Press, Cambridge, UK, 1982.
[184]
G. A. Dunn, “How do cells respond to ultrafine surface contours?” Bioessays, vol. 13, no. 10, pp. 541–543, 1991.
[185]
A. M. Green, J. A. Jansen, J. P. C. M. Van der Waerden, and A. F. Von Recum, “Fibroblast response to microtextured silicone surfaces: texture orientation into or out of the surface,” Journal of Biomedical Materials Research, vol. 28, no. 5, pp. 647–653, 1994.
[186]
B. Chehroudi and D. M. Burnette, “Effects of surface topography on cell behaviour,” in Encylopedic Handbook of Biomaterials and Bioengineering. Part A: Materials, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, G. D. Gresser, and E. R. Schwartz, Eds., Marcel Dekker, New York, NY, USA, 1995.
[187]
A. Curtis and C. Wilkinson, “Topographical control of cell migration,” in Motion Analysis of Living Cells, D. R. Insoll and D. Wessels, Eds., Wiley-Liss, 1998.
[188]
A. Wood, “Contact guidance on microfabricated substrata: the response of teleost fin mesenchyme cells to repeating topographical patterns,” Journal of Cell Science, vol. 90, pp. 667–681, 1988.
[189]
S. Britland, C. Perridge, M. Denyer, H. Morgan, A. Curtis, and C. Wilkinson, “Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth,” Experimental Biology Online, vol. 1, pp. 1–15, 1997.
[190]
J. L. Charest, M. T. Eliason, A. J. García, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates,” Biomaterials, vol. 27, no. 11, pp. 2487–2494, 2006.
[191]
A. M. Rajnicek, S. Britland, and C. D. McCaig, “Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type,” Journal of Cell Science, vol. 110, no. 23, pp. 2905–2913, 1997.
[192]
J. Meyle, K. Gultig, and W. Nisch, “Variation in contact guidance by human cells on a microstructured surface,” Journal of Biomedical Materials Research, vol. 29, no. 1, pp. 81–88, 1995.
[193]
S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Engineering, vol. 13, no. 8, pp. 2105–2117, 2007.
[194]
A. Curtis and C. Wilkinson, “Nantotechniques and approaches in biotechnology,” Trends in Biotechnology, vol. 19, no. 3, pp. 97–101, 2001.
[195]
A. S. G. Curtis, N. Gadegaard, M. J. Dalby, M. O. Riehle, C. D. W. Wilkinson, and G. Aitchison, “Cells react to nanoscale order and symmetry in their surroundings,” IEEE Transactions on Nanobioscience, vol. 3, no. 1, pp. 61–65, 2004.
[196]
K. Rechendorff, M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher, “Enhancement of protein adsorption induced by surface roughness,” Langmuir, vol. 22, no. 26, pp. 10885–10888, 2006.
[197]
M. S. Lord, M. Foss, and F. Besenbacher, “Influence of nanoscale surface topography on protein adsorption and cellular response,” Nano Today, vol. 5, no. 1, pp. 66–78, 2010.
[198]
M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands,” Experimental Cell Research, vol. 276, no. 1, pp. 1–9, 2002.
[199]
C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: a review,” Tissue Engineering, vol. 11, no. 1-2, pp. 1–18, 2005.
[200]
M. B. Hovgaard, K. Rechendorff, J. Chevallier, M. Foss, and F. Besenbacher, “Fibronectin adsorption on tantalum: the influence of nanoroughness,” Journal of Physical Chemistry B, vol. 112, no. 28, pp. 8241–8249, 2008.
[201]
E. Macarena Blanco, M. A. Horton, and P. Mesquida, “Simultaneous investigation of the influence of topography and charge on protein adsorption using artificial nanopatterns,” Langmuir, vol. 24, no. 6, pp. 2284–2287, 2008.
[202]
E. T. Den Braber, J. E. De Ruijter, H. T. J. Smits, L. A. Ginsel, A. F. Von Recum, and J. A. Jansen, “Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves,” Biomaterials, vol. 17, no. 11, pp. 1093–1099, 1996.
[203]
E. T. Den Braber, J. E. De Ruijter, L. A. Ginsel, A. F. Von Recum, and J. A. Jansen, “Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces,” Journal of Biomedical Materials Research, vol. 40, no. 2, pp. 291–300, 1998.
[204]
A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, “Epithelial contact guidance on well-defined micro- and nanostructured substrates,” Journal of Cell Science, vol. 116, no. 10, pp. 1881–1892, 2003.
[205]
E. K. F. Yim, R. M. Reano, S. W. Pang, A. F. Yee, C. S. Chen, and K. W. Leong, “Nanopattern-induced changes in morphology and motility of smooth muscle cells,” Biomaterials, vol. 26, no. 26, pp. 5405–5413, 2005.
[206]
M. J. Dalby, M. O. Riehle, H. Johnstone, S. Affrossman, and A. S. G. Curtis, “In vitro reaction of endothelial cells to polymer demixed nanotopography,” Biomaterials, vol. 23, no. 14, pp. 2945–2954, 2002.
[207]
S. Buttiglieri, D. Pasqui, M. Migliori et al., “Endothelization and adherence of leucocytes to nanostructured surfaces,” Biomaterials, vol. 24, no. 16, pp. 2731–2738, 2003.
[208]
C. M. Nelson and C. S. Chen, “Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal,” FEBS Letters, vol. 514, no. 2-3, pp. 238–242, 2002.
[209]
B. G. Cousins, P. J. Doherty, R. L. Williams, J. Fink, and M. J. Garvey, “The effect of silica nanoparticulate coatings on cellular response,” Journal of Materials Science, vol. 15, no. 4, pp. 355–359, 2004.
[210]
M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Polymer-demixed nanotopography: control of fibroblast spreading and proliferation,” Tissue Engineering, vol. 8, no. 6, pp. 1099–1108, 2002.
[211]
J. Lovmand, J. Justesen, M. Foss et al., “The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization,” Biomaterials, vol. 30, no. 11, pp. 2015–2022, 2009.
[212]
T. J. Webster, R. W. Siegel, and R. Bizios, “Osteoblast adhesion on nanophase ceramics,” Biomaterials, vol. 20, no. 13, pp. 1221–1227, 1999.
[213]
T. J. Webster, R. W. Siegel, and R. Bizios, “Design and evaluation of nanophase alumina for orthopaedic/dental applications,” Nanostructured Materials, vol. 12, no. 5, pp. 983–986, 1999.
[214]
J. Y. Yang, Y. C. Ting, J. Y. Lai, H. L. Liu, H. W. Fang, and W. B. Tsai, “Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions,” Journal of Biomedical Materials Research A, vol. 90, no. 3, pp. 629–640, 2009.
[215]
P. Clark, P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, “Cell guidance by ultrafine topography in vitro,” Journal of Cell Science, vol. 99, no. 1, pp. 73–77, 1991.
[216]
P. Clark, P. Connolly, and G. R. Moores, “Cell guidance by micropatterned adhesiveness in vitro,” Journal of Cell Science, vol. 103, no. 1, pp. 287–292, 1992.