全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolving Bioprosthetic Tissue Calcification Can Be Quantified Using Serial Multislice CT Scanning

DOI: 10.1155/2013/617329

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. We investigated the value of serial multislice CT scanning for in vivo determination of evolving tissue calcification in three separate experimental settings. Materials and Methods. Bioprosthetic valve tissue was implanted in three different conditions: (1) glutaraldehyde-fixed porcine stentless conduits in pulmonary position ( ); (2) glutaraldehyde-fixed stented pericardial valves in mitral position ( ); and (3) glutaraldehyde-fixed pericardial tissue as patch in the jugular vein and carotid artery ( ). Multislice CT scanning was performed at various time intervals. Results. In stentless conduits, the distribution of wall calcification can be reliably quantified with CT. After 20 weeks, the CT-determined mean calcium volume was 1831 ± 581?mm3, with a mean wall calcium content of 89.8 ± 44.4?μg/mg ( ). In stented pericardial valves implanted in mitral position, reliable determination of tissue mineralization is disturbed by scattering caused by the (continuously moving) alloy of the stent material. Pericardial patches in the neck vessels revealed progressive mineralization, with a significant increase in mean HU and calcium volume at 8 weeks after implantation, rising up to a level of 131.1 ± 39.6?mm3 (mean calcium volume score) and a mean calcium content of 19.1 ± 12.3?μg/mg. Conclusion. The process of bioprosthetic tissue mineralization can be visualized and quantified in vivo using multislice CT scanning. This allows determination of the kinetics of tissue mineralization with intermediate in vivo evaluations. 1. Introduction Calcific degeneration of implanted bioprosthetic material is still problematic. Despite several advances in tissue treatment and valve design, tissue calcification remains the most important factor limiting the durability of biological heart valves [1]. New valve designs or new tissue treatments are tested in chronic animal models to evaluate whether the durability can be enhanced and the calcification potential can be diminished. Several animal models, ranging from simple subcutaneous implants in rats to whole valve implantations in sheep, exist to evaluate the behavior of chronically implanted tissue [2]. In all currently used models, evaluation of the extent of tissue mineralization is performed at the end of the experiment. Depending on the model, a bioprosthetic tissue fragment or a complete valve is implanted during a certain predetermined time, after which the animal is sacrificed, and the explanted tissue is recovered for further analysis. The explanted tissue can be investigated using different techniques

References

[1]  F. J. Schoen and R. J. Levy, “Calcification of tissue heart valve substitutes: progress toward understanding and prevention,” Annals of Thoracic Surgery, vol. 79, no. 3, pp. 1072–1080, 2005.
[2]  W. Flameng, B. Meuris, J. Yperman, G. de Visscher, P. Herijgers, and E. Verbeken, “Factors influencing calcification of cardiac bioprostheses in adolescent sheep,” Journal of Thoracic and Cardiovascular Surgery, vol. 132, no. 1, pp. 89–98, 2006.
[3]  P. Herijgers, S. Ozaki, E. Verbeken et al., “Calcification characteristics of porcine stentless valves in juvenile sheep,” European Journal of Cardio-Thoracic Surgery, vol. 15, no. 2, pp. 134–142, 1999.
[4]  M. Jones, E. E. Eidbo, S. L. Hilbert, V. J. Ferrans, and R. E. Clark, “The effects of anticalcification treatments on bioprosthetic heart valves implanted in sheep,” ASAIO Transactions, vol. 34, no. 4, pp. 1027–1030, 1988.
[5]  E. Pettenazzo, M. Valente, and G. Thiene, “Octanediol treatment of glutaraldehyde fixed bovine pericardium: evidence of anticalcification efficacy in the subcutaneous rat model,” European Journal of Cardio-Thoracic Surgery, vol. 34, no. 2, pp. 418–422, 2008.
[6]  B. Meuris, S. Ozaki, P. Herijgers, E. Verbeken, and W. Flameng, “Influence of species, environmental factors, and tissue cellularity on calcification of porcine aortic wall tissue,” Seminars in Thoracic and Cardiovascular Surgery, vol. 13, no. 4, supplement 1, pp. 99–105, 2001.
[7]  B. Meuris, R. Phillips, M. A. Moore, and W. Flameng, “Porcine stentless bioprostheses: prevention of aortic wall calcification by dye-mediated photo-oxidation,” Artificial Organs, vol. 27, no. 6, pp. 537–543, 2003.
[8]  B. Meuris, S. Ozaki, P. Herijgers, E. Verbeken, and W. Flameng, “Bioprosthetic tissue calcification: influence of blood contact and arterial pressure. An experimental study in rats and sheep,” Journal of Heart Valve Disease, vol. 12, no. 3, pp. 392–399, 2003.
[9]  H. Javadpour, D. Veerasingam, and A. E. Wood, “Calcification of homograft valves in the pulmonary circulation—is it device or donation related?” European Journal of Cardio-Thoracic Surgery, vol. 22, no. 1, pp. 78–81, 2002.
[10]  S.-M. Yuan, D. Mishaly, A. Shinfeld, and E. Raanani, “Right ventricular outflow tract reconstruction: valved conduit of choice and clinical outcomes,” Journal of Cardiovascular Medicine, vol. 9, no. 4, pp. 327–337, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133