Polymeric nanoparticles were developed from a series of chemical reactions using chitosan, polyethylene glycol, and a cell-targeting peptide (CP15). The nanoparticles were complexed with PLK1-siRNA. The optimal siRNA loading was achieved at an N?:?P ratio of 129.2 yielding a nanoparticle size of >200?nm. These nanoparticles were delivered intraperitoneally and tested for efficient delivery, cytotoxicity, and biodistribution in a mouse xenograft model of colorectal cancer. Both unmodified and modified chitosan nanoparticles showed enhanced accumulation at the tumor site. However, the modified chitosan nanoparticles showed considerably, less distribution in other organs. The relative gene expression as evaluated showed efficient delivery of PLK1-siRNA (0.5?mg/kg) with % knockdown ( ) of PLK1 gene. The in vivo data reveals no systemic toxicity in the animals, when tested for systemic inflammation and liver toxicity. These results indicate a potential of using peptide-tagged nanoparticles for systemic delivery of siRNA at the targeted tumor site. 1. Introduction Cancer is characterized by the uncontrolled growth of a group of cells that infest adjacent tissues and often metastasize to other organs via the lymphatic or circulatory system. It is primarily caused by environmental factors (90–95%), but also by genetic factors (5–10%) [1]. Typically the alteration in cell growth promoting oncogenes and cell division inhibiting tumor suppressive genes leads to the formation of cancer cells [2]. Depending on the stage of the cancer, the treatment options available include surgical removal, chemotherapy with anticancer drugs, such as 5-fluorouracil, oxaliplatin, and leucovorin [3], radiation therapy, immunotherapy [4], and hormone therapy with drugs like cetuximab and panitumumab [5]. However, it has been shown that cancers with genetic origin do not benefit from these chemotherapies [5]. Moreover, the toxicity and side-effects have severely limited the safety and effectiveness of these methods. One of the target proteins in cancer therapy is serine/threonine-protein kinase (PLK1), a key regulator of mitosis in mammalian cells. PLK1 is a protooncogene overexpressed in a variety of human cancers [6, 7]. It is directly associated with p53, a tumor suppressor protein, and on interaction with p53, it inhibits the latter’s transactivation and proapoptotic activity [8], leading to uncontrolled cell proliferation. Recently, the inhibition of PLK1 with antibodies, antisense oligonucleotides (ASOs), small interfering RNA (siRNA), or dominant negative mutants that suppress
References
[1]
P. Anand, A. B. Kunnumakkara, C. Sundaram et al., “Cancer is a preventable disease that requires major lifestyle changes,” Pharmaceutical Research, vol. 25, no. 9, pp. 2097–2116, 2008.
[2]
A. G. Knudson, “Two genetic hits (more or less) to cancer,” Nature Reviews Cancer, vol. 1, no. 2, pp. 157–162, 2001.
[3]
D. Sargent, A. Sobrero, A. Grothey et al., “Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials,” Journal of Clinical Oncology, vol. 27, no. 6, pp. 872–877, 2009.
[4]
S. Mosolits, B. Nilsson, and H. Mellstedt, “Towards therapeutic vaccines for colorectal carcinoma: a review of clinical trials,” Expert Review of Vaccines, vol. 4, no. 3, pp. 329–350, 2005.
[5]
G. Wang and R. K. Kelley, “GAPPNet. KRAS mutational analysis for colorectal cancer application: pharmacogenomic,” PLOS Currents, vol. 2, Article ID RRN1175, 2010.
[6]
F. Eckerdt, J. Yuan, and K. Strebhardt, “Polo-like kinases and oncogenesis,” Oncogene, vol. 24, no. 2, pp. 267–276, 2005.
[7]
N. Takai, R. Hamanaka, J. Yoshimatsu, and I. Miyakawa, “Polo-like kinases (Plks) and cancer,” Oncogene, vol. 24, no. 2, pp. 287–291, 2005.
[8]
K. Ando, T. Ozaki, H. Yamamoto et al., “Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation,” Journal of Biological Chemistry, vol. 279, no. 24, pp. 25549–25561, 2004.
[9]
B. Sp?nkuch-Schmitt, J. Bereiter-Hahn, M. Kaufmann, and K. Strebhardt, “Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells,” Journal of the National Cancer Institute, vol. 94, no. 24, pp. 1863–1877, 2002.
[10]
X. Liu and R. L. Erikson, “Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5789–5794, 2003.
[11]
X. Liu, M. Lei, and R. L. Erikson, “Normal cells, but not cancer cells, survive severe Plk1 depletion,” Molecular and Cellular Biology, vol. 26, no. 6, pp. 2093–2108, 2006.
[12]
R. Guan, P. Tapang, J. D. Leverson, D. Albert, V. L. Giranda, and Y. Luo, “Small interfering RNA-mediated polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals,” Cancer Research, vol. 65, no. 7, pp. 2698–2704, 2005.
[13]
H. A. Lane and E. A. Nigg, “Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes,” Journal of Cell Biology, vol. 135, no. 6, pp. 1701–1713, 1996.
[14]
J. P. Cogswell, C. E. Brown, J. E. Bisi, and S. D. Neill, “Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function,” Cell Growth and Differentiation, vol. 11, no. 12, pp. 615–623, 2000.
[15]
R. Nahta and F. J. Esteva, “Herceptin: mechanisms of action and resistance,” Cancer Letters, vol. 232, no. 2, pp. 123–138, 2006.
[16]
G. Valabrega, F. Montemurro, and M. Aglietta, “Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer,” Annals of Oncology, vol. 18, no. 6, pp. 977–984, 2007.
[17]
P. Chopra, G. Sethi, S. G. Dastidar, and A. Ray, “Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics,” Expert Opinion on Investigational Drugs, vol. 19, no. 1, pp. 27–43, 2010.
[18]
Tekmira Pharmaceuticals Corporation, “Dose Escalation Study to Determine Safety, Pharmacokinetics, and Pharmacodynamics of Intravenous TKM-080301,” Identifier: NCT01262235, http://www.clinicaltrials.gov/.
[19]
S. H. Chen and G. Zhaori, “Potential clinical applications of siRNA technique: benefits and limitations,” European Journal of Clinical Investigation, vol. 41, no. 2, pp. 221–232, 2011.
[20]
K. Kiefer, J. Clement, P. Garidel, and R. Peschka-Süss, “Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells,” Pharmaceutical Research, vol. 21, no. 6, pp. 1009–1017, 2004.
[21]
J. W. Yoo, S. W. Hong, S. Kim, and D. Lee, “Inflammatory cytokine induction by siRNAs is cell type- and transfection reagent-specific,” Biochemical and Biophysical Research Communications, vol. 347, no. 4, pp. 1053–1058, 2006.
S. E. McNeil, “Nanotechnology for the biologist,” Journal of Leukocyte Biology, vol. 78, no. 3, pp. 585–594, 2005.
[27]
A. Aigner, “Delivery systems for the direct application of siRNAs to induce RNA interference (RNAi) in vivo,” Journal of Biomedicine and Biotechnology, vol. 2006, Article ID 71659, 15 pages, 2006.
[28]
Y. Zhang, J. Chen, Y. Zhang et al., “Panning and identification of a colon tumor binding peptide from a phage display peptide library,” Journal of Biomolecular Screening, vol. 12, no. 3, pp. 429–435, 2007.
[29]
M. Malhotra, C. Tomaro-Duchesneau, and S. Prakash, “Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases,” Biomaterials, vol. 34, no. 4, pp. 1270–1280, 2013.
[30]
M. Malhotra, A. Kulamarva, S. Sebak et al., “Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells ultrafine nanoparticles siRNA delivery system,” Drug Development and Industrial Pharmacy, vol. 35, no. 6, pp. 719–726, 2009.
[31]
S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, and S. Abbasi, “Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy,” Advanced Drug Delivery Reviews, vol. 63, no. 14-15, pp. 1340–1351, 2011.
[32]
B. Haley and E. Frenkel, “Nanoparticles for drug delivery in cancer treatment,” Urologic Oncology, vol. 26, no. 1, pp. 57–64, 2008.
[33]
Y. W. Cho, J. Kim, and K. Park, “Polycation gene delivery systems: escape from endosomes to cytosol,” Journal of Pharmacy and Pharmacology, vol. 55, no. 6, pp. 721–734, 2003.
[34]
X. Liu, K. A. Howard, M. Dong et al., “The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing,” Biomaterials, vol. 28, no. 6, pp. 1280–1288, 2007.
[35]
Y. H. Bae and K. Park, “Targeted drug delivery to tumors: myths, reality and possibility,” Journal of Controlled Release, vol. 153, no. 3, pp. 198–205, 2011.
[36]
A. Z. Wang, R. Langer, and O. C. Farokhzad, “Nanoparticle delivery of cancer drugs,” Annual Review of Medicine, vol. 63, pp. 185–198, 2012.
[37]
L. Huang and S. Guo, “Nanoparticles escaping RES and endosome: challenges for siRNA delivery for cancer therapy,” Journal of Nanomaterials, vol. 2011, Article ID 742895, 12 pages, 2011.
[38]
L. A. Tobin, Y. Xie, M. Tsokos et al., “Pegylated siRNA-loaded calcium phosphate nanoparticle-driven amplification of cancer cell internalization in-vivo,” Biomaterials, vol. 34, no. 12, pp. 2980–2990, 2013.
[39]
K. Y. Choi, K. H. Min, H. Y. Yoon et al., “PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo,” Biomaterials, vol. 32, no. 7, pp. 1880–1889, 2011.
[40]
R. Gref, M. Lück, P. Quellec et al., “‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption,” Colloids and Surfaces B, vol. 18, no. 3-4, pp. 301–313, 2000.
[41]
S. Hak, E. Helgesen, H. H. Hektoen, et al., “The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in-vivo by dual modality imaging,” ACS Nano, vol. 6, no. 6, pp. 5648–5658, 2012.
[42]
M. Malhotra, C. Tomaro-Duchesneau, S. Saha, and S. Prakash, “Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA,” International Journal of Nanomedicine, vol. 8, pp. 2041–2052, 2013.
[43]
T. Ishida and H. Kiwada, “Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes,” International Journal of Pharmaceutics, vol. 354, no. 1-2, pp. 56–62, 2008.
[44]
T. Ishihara, T. Maeda, H. Sakamoto et al., “Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers,” Biomacromolecules, vol. 11, no. 10, pp. 2700–2706, 2010.
[45]
M. R. Sherman, L. D. Williams, M. A. Sobczyk, S. J. Michaels, and M. G. P. Saifer, “Role of the methoxy group in immune responses to mpeg-protein conjugates,” Bioconjugate Chemistry, vol. 23, no. 3, pp. 485–499, 2012.
[46]
B. Sp?nkuch, I. Steinhauser, H. Wartlick, E. Kurunci-Csacsko, K. I. Strebhardt, and K. Langer, “Downregulation of Plk1 expression by receptor-mediated uptake of antisense oligonucleotide-loaded nanoparticles,” Neoplasia, vol. 10, no. 3, pp. 223–234, 2008.
[47]
I. Steinhauser, K. Langer, K. Strebhardt, and B. Sp?nkuch, “Uptake of plasmid-loaded nanoparticles in breast cancer cells and effect on Plk1 expression,” Journal of Drug Targeting, vol. 17, no. 8, pp. 627–637, 2009.
[48]
S. Dharmapuri, D. Peruzzi, E. Marra et al., “Intratumor RNA interference of cell cycle genes slows down tumor progression,” Gene Therapy, vol. 18, no. 7, pp. 727–733, 2011.
[49]
M. M. Schmidt and K. D. Wittrup, “A modeling analysis of the effects of molecular size and binding affinity on tumor targeting,” Molecular Cancer Therapeutics, vol. 8, no. 10, pp. 2861–2871, 2009.
[50]
C. H. J. Choi, C. A. Alabi, P. Webster, and M. E. Davis, “Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1235–1240, 2010.
[51]
N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles-properties and prospects for their use in human medicine,” Trends in Biotechnology, vol. 26, no. 8, pp. 425–433, 2008.
[52]
S. Mishra, P. Webster, and M. Davis, “PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles,” European Journal of Cell Biology, vol. 83, no. 3, pp. 97–111, 2004.
[53]
“Tech note: In-vivo RNAi: Biodistribution, Delivery, and Applications,” Thermoscientificbio.
[54]
X. Li, Y. Chen, M. Wang, Y. Ma, W. Xia, and H. Gu, “A mesoporous silica nanoparticle-PEI-fusogenic peptide system for siRNA delivery in cancer therapy,” Biomaterials, vol. 34, no. 4, pp. 1391–1401, 2013.
[55]
W. J. Kim, J. W. Yockman, J. H. Jeong et al., “Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice,” Journal of Controlled Release, vol. 114, no. 3, pp. 381–388, 2006.
[56]
F. Czauderna, M. Fechtner, S. Dames et al., “Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells,” Nucleic Acids Research, vol. 31, no. 11, pp. 2705–2716, 2003.
[57]
M. Robbins, A. Judge, L. Liang, K. McClintock, E. Yaworski, and I. MacLachlan, “2′-O-methyl-modified RNAs act as TLR7 antagonists,” Molecular Therapy, vol. 15, no. 9, pp. 1663–1669, 2007.
[58]
M. Malhotra, S. Nambiar, V. Rengaswamy, and S. Prakash, “Small interfering ribonucleic acid design strategies for effective targeting and gene silencing,” Expert Opinion on Drug Discovery, vol. 6, no. 3, pp. 269–289, 2011.