全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics

DOI: 10.1155/2013/412482

Full-Text   Cite this paper   Add to My Lib

Abstract:

In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. 1. Introduction This study is part of a multidisciplinary approach where the long-term objective is to understand the role of specific surface properties when bone and marrow are exposed to an implant. The objective and rationale for the approach are presented in an earlier report [1]. In short, the surfaces of machined, threaded titanium implants are modified and characterized in different ways and the bone response and bone-implant interface are investigated in vivo [1–3]. Whereas earlier studies addressed the role of roughness and surface oxide thickness, modified by electrochemical methods, in this study we inquire further into smaller chemical changes on implant surfaces. The hypothesis is that surface chemical composition does influence the tissue response including the bone response to titanium implant. We chose machined titanium implants as the control because this was the starting material for three different surface modifications that were studied. In previous studies, we examined the response of bone around threaded titanium implants with different surface modifications (machined, electropolished, machined, and

References

[1]  C. Larsson, P. Thomsen, J. Lausmaa, M. Rodahl, B. Kasemo, and L. E. Ericson, “Bone response to surface modified titanium implants: studies on electropolished implants with different oxide thicknesses and morphology,” Biomaterials, vol. 15, no. 13, pp. 1062–1074, 1994.
[2]  C. Larsson, L. Emanuelsson, P. Thomsen et al., “Bone response to surface modified titanium implants. Studies on the tissue response after one year to machined and electropolished implants with different oxide thicknesses,” Journal of Materials Science, vol. 8, no. 12, pp. 721–729, 1997.
[3]  C. Larsson, P. Thomsen, B.-O. Aronsson et al., “Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses,” Biomaterials, vol. 17, no. 6, pp. 605–616, 1996.
[4]  B.-O. Aronsson, Preparation and Chacterization of Glow Discharge Modified Titanium Surfaces, G?teborg University, G?teborg, Sweden, 1995.
[5]  B.-O. Aronsson, J. Lausmaa, and B. Kasemo, “Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials,” Journal of Biomedical Materials Research, vol. 35, no. 1, pp. 49–73, 1997.
[6]  W. Gombotz and A. Hoffman, “Gas-discharge tecniques for biomaterial modification,” Critical Reviews in Biocompatibility, vol. 4, pp. 1–42, 1987.
[7]  B. Kasemo and J. Lausmaa, “Biomaterial and implant surfaces: on the role of cleanliness, contamination, and preparation procedures,” Journal of Biomedical Materials Research, vol. 22, no. 2, pp. 145–158, 1988.
[8]  D. C. Smith, R. M. Pilliar, J. B. Metson, and N. S. McIntyre, “Dental implant materials. II. Preparative procedures and surface spectroscopic studies,” Journal of Biomedical Materials Research, vol. 25, no. 9, pp. 1069–1084, 1991.
[9]  A. Zhecheva, W. Sha, S. Malinov, and A. Long, “Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods,” Surface and Coatings Technology, vol. 200, no. 7, pp. 2192–2207, 2005.
[10]  J. W. McGowan and M. J. Malachowski, “Soft x-ray replication of biological material—x-ray microscopy and microchemical analysis of cells,” Annals of the New York Academy of Sciences, vol. 342, pp. 288–303, 1980.
[11]  M. Moisana, J. Barbeaub, S. Moreauc, J. Pelletierd, M. Tabrizianc, and L. H. Yahiac, “Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms,” International Journal of Pharmaceutics, vol. 226, no. 1-2, pp. 1–21, 2001.
[12]  H. Rauscher, O. Kylián, J. Benedikt, A. von Keudell, and F. Rossi, “Elimination of biological contaminations from surfaces by plasma discharges: chemical sputtering,” ChemPhysChem, vol. 11, no. 7, pp. 1382–1389, 2010.
[13]  R. E. Baier and A. E. Meyer, “Implant surface preparation,” The International Journal of Oral & Maxillofacial Implants, vol. 3, no. 1, pp. 9–20, 1988.
[14]  R. Baier, A. Meyer, and J. Natiella, “Implant surface physics and chemistry: improvements and impediments to bioadhesion,” in Tissue Integration in Oral, Orthopedic & Maxillofacial Reconstruction, W. Laney and D. Tolman, Eds., pp. 240–249, Quintessence, Chicago, Ill, USA, 1992.
[15]  K. Duske, I. Koban, E. Kindel et al., “Atmospheric plasma enhances wettability and cell spreading on dental implant metals,” Journal of Clinical Periodontology, vol. 39, no. 4, pp. 400–407, 2012.
[16]  I. Dion, C. Baquey, P. Havlik, and J. R. Monties, “A new model to test platelet adhesion under dynamic conditions. Application to the evaluation of a titanium nitride coating,” International Journal of Artificial Organs, vol. 16, no. 7, pp. 545–550, 1993.
[17]  I. Dion, X. Roques, N. More et al., “Ex vivo leucocyte adhesion and protein adsorption on TiN,” Biomaterials, vol. 14, no. 9, pp. 712–719, 1993.
[18]  L. Thair, U. K. Mudali, N. Bhuvaneswaran, K. G. M. Nair, R. Asokamani, and B. Raj, “Nitrogen ion implantation and in vitro corrosion behavior of as-cast Ti-6Al-7Nb alloy,” Corrosion Science, vol. 44, no. 11, pp. 2439–2457, 2002.
[19]  I. Braceras, J. I. Alava, J. I. Oate et al., “Improved osseointegration in ion implantation-treated dental implants,” Surface and Coatings Technology, vol. 158-159, pp. 28–32, 2002.
[20]  P. Tengvall, Titanium-Hydrogen Peroxide Interaction With Reference To Biomaterial Applications, University of Link?ping, Link?ping, Sweden, 1990.
[21]  P. Tengvall, H. Elwing, and I. Lundstr?m, “Titanium gel made from metallic titanium and hydrogen peroxide,” Journal of Colloid And Interface Science, vol. 130, no. 2, pp. 405–413, 1989.
[22]  P. Tengvall, H. Elwing, L. Sjoqvist, I. Lundstrom, and L. M. Bjursten, “Interaction between hydrogen peroxide and titanium: a possible role in the biocompatibility of titanium,” Biomaterials, vol. 10, no. 2, pp. 118–120, 1989.
[23]  P. Tengvall, I. Lundstrom, L. Sjoqvist, H. Elwing, and L. M. Bjursten, “Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants,” Biomaterials, vol. 10, no. 3, pp. 166–175, 1989.
[24]  B. W?livaara, In Vitro Studies of Selected Blood Proteins on Solid Surfaces, Link?ping University, Link?ping, Sweden, 1996.
[25]  G. Davis, M. Natan, and K. A. Anderson, “Study of titanium oxides using Auger line shapes,” Applications of Surface Science, vol. 15, no. 1–4, pp. 321–333, 1983.
[26]  J. Griffith, D. Grigg, M. Vasile, P. Russell, and E. Fitzgerald, “Scanning probe metrology,” Journal of Vacuum Science Technology A, vol. 10, no. 4, pp. 674–679, 1992.
[27]  A. Wennerberg, On a surface Roughness and Implant Incorporation, G?teborg University, G?teborg, Sweden, 1996.
[28]  K. Donath and G. Breuner, “A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage-Schliff (sawing and grinding) technique,” Journal of Oral Pathology, vol. 11, no. 4, pp. 318–326, 1982.
[29]  J. Lausmaa, “Surface spectroscopic characterization of titanium implant materials,” Journal of Electron Spectroscopy and Related Phenomena, vol. 81, no. 3, pp. 343–361, 1996.
[30]  I. Bertóti, M. Mohai, J. L. Sullivan, and S. O. Saied, “Surface characterisation of plasma-nitrided titanium: an XPS study,” Applied Surface Science, vol. 84, no. 4, pp. 357–371, 1995.
[31]  P. Dawson and K. Tzatzov, “Quantitative auger electron analysis of titanium nitrides,” Surface Science, vol. 149, no. 1, pp. 105–118, 1985.
[32]  J. Lausmaa, T. Rostlund, and H. McKellop, “Surface spectroscopic study of nitrogen ion-implanted Ti and Ti-6Al-4V wear against UHMWPE,” Surface and Interface Analysis, vol. 15, no. 5, pp. 328–336, 1990.
[33]  E. Roliński, “Mechanism of high-temperature plasma nitriding of titanium,” Materials Science and Engineering C, vol. 100, pp. 193–199, 1988.
[34]  H. Tompkins, “Oxidation of titanium nitride in room air and in dry O2,” Journal of Applied Physics, vol. 70, no. 7, pp. 3876–3880, 1991.
[35]  H. Tompkins, “The initial stages of the oxidation of titanium nitride,” Journal of Applied Physics, vol. 71, no. 2, pp. 980–983, 1992.
[36]  M. Vasile, A. Emerson, and F. Baiocchi, “The characterization of titanium nitride by x-ray photoelectron spectroscopy and Rutherford backscattering,” Journal of Vacuum Science Technology A, vol. 8, no. 1, pp. 99–105, 1990.
[37]  L. Sennerby, P. Thomsen, and L. E. Ericson, “Early tissue response to titanium implants inserted in rabbit cortical bone. Part I. Light microscopic observations,” Journal of Materials Science, vol. 4, no. 3, pp. 240–250, 1993.
[38]  R. Br?nemark, A Biomechanical Study of OsseointegRation. In Vivo Measurements in Rat, Rabbit, Dog and Man, G?teborg University, G?teborg, Sweden, 1996.
[39]  P. G. Coelho, J. M. Granjeiro, G. E. Romanos et al., “Basic research methods and current trends of dental implant surfaces,” Journal of Biomedical Materials Research B, vol. 88, no. 2, pp. 579–596, 2009.
[40]  K. Healey and P. Ducheyne, “The mechanism of passive dissolution of titanium in a model physological environment,” Journal of Biomedical Materials Research, vol. 26, no. 3, pp. 319–338, 1992.
[41]  K. Healy and P. Ducheyne, “Oxidation kinetics of titanium thin films in model physiologic environments,” Journal of Colloid And Interface Science, vol. 150, no. 2, pp. 404–417, 1992.
[42]  Y. Tamura, A. Yokoyama, F. Watari, and T. Kawasaki, “Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials,” Dental Materials Journal, vol. 21, no. 4, pp. 355–372, 2002.
[43]  A. Scarano, M. Piattelli, G. Vrespa, G. Petrone, G. Iezzi, and A. Piattelli, “Bone healing around titanium and titanium nitride-coated dental implants with three surfaces: an experimental study in rats,” Clinical Implant Dentistry and Related Research, vol. 5, no. 2, pp. 103–111, 2003.
[44]  S. Durual, P. Rieder, G. Garavaglia, A. Filieri, M. Cattani-Lorente, S. S. Scherrer, et al., “TiNOx coatings on roughened titanium and CoCr alloy accelerate early osseointegration of dental implants in minipigs,” Bone, vol. 52, no. 1, pp. 230–237, 2013.
[45]  M. Therin, A. Meunier, and P. Christel, “A histomorphometric comparison of the muscular tissue reaction to stainless steel, pure titanium and titanium alloy implant materials,” Journal of Materials Science, vol. 2, no. 1, pp. 1–8, 1991.
[46]  I. Dion, C. Baquey, B. Candelon, and J. R. Monties, “Hemocompatibility of titanium nitride,” International Journal of Artificial Organs, vol. 15, no. 10, pp. 617–621, 1992.
[47]  Y. Yang, S. F. Franzen, and C. L. Olin, “In vivo comparison of hemocompatibility of materials used in mechanical heart valves,” Journal of Heart Valve Disease, vol. 5, no. 5, pp. 532–537, 1996.
[48]  V. Karagkiozaki, S. Logothetidis, N. Kalfagiannis, S. Lousinian, and G. Giannoglou, “Atomic force microscopy probing platelet activation behavior on titanium nitride nanocoatings for biomedical applications,” Nanomedicine, vol. 5, no. 1, pp. 64–72, 2009.
[49]  M. Annunziata, A. Oliva, M. A. Basile et al., “The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces,” Journal of Dentistry, vol. 39, no. 11, pp. 720–728, 2011.
[50]  R. P. van Hove, P. A. Nolte, C. M. Semeins, and J. Klein-Nulend, “Differences in proliferation, differentiation, and cytokine production by bone cells seeded on titanium-nitride and cobalt-chromium-molybdenum surfaces,” Journal of Biomaterials Applications, vol. 28, no. 2, pp. 278–287, 2013.
[51]  P. Rieder, S. Scherrer, A. Filieri, H. W. Wiskott, and S. Durual, “TiNOx coatings increase human primary osteoblasts proliferation independently of the substrate: a short report,” Bio-Medical Materials and Engineering, vol. 22, no. 5, pp. 277–281, 2012.
[52]  J. Ellingsen and E. Pinholt, “Pretreatment of titanium implants with lanthanum ions alters the bone reaction,” Journal of Materials Science, vol. 6, no. 3, pp. 125–129, 1995.
[53]  M. Abe, “Oxides and hydrous oxides of multivalent metals as inorganic ion exchangers,” in Inorganic Ion Exchange Materials, A. Clearfield, Ed., pp. 179–185, CRC Press, Boca Raton, Fla, USA, 1982.
[54]  J. Ellingsen, “Pre-treatment of titanium implants with fluoride improves their retention in bone,” Journal of Materials Science, vol. 6, no. 12, pp. 749–753, 1995.
[55]  C. Johansson, A. Wennerberg, A. Holmén, and J.-E. Ellingsen, “Enhanced fixation of bone to fluoride-modified implants,” in Proceedings of the 6th World Biomatterials Congress, p. 601, Society for Biomaterials, Kamuela, Hawaii, USA, 2000.
[56]  D. Kaelble, Physical Chemistry of Adhesion, Wiley Interscience, New York, NY, USA, 1971.
[57]  G. Zhao, Z. Schwartz, M. Wieland et al., “High surface energy enhances cell response to titanium substrate microstructure,” Journal of Biomedical Materials Research A, vol. 74, no. 1, pp. 49–58, 2005.
[58]  G. Zhao, A. L. Raines, M. Wieland, Z. Schwartz, and B. D. Boyan, “Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography,” Biomaterials, vol. 28, no. 18, pp. 2821–2829, 2007.
[59]  K. Navaneetha Pandiyaraj, V. Selvarajan, Y. H. Rhee, H. W. Kim, and M. Pavese, “Effect of dc glow discharge plasma treatment on PET/TiO2 thin film surfaces for enhancement of bioactivity,” Colloids and Surfaces B, vol. 79, no. 1, pp. 53–60, 2010.
[60]  D. K. Pattanayak, S. Yamaguchi, T. Matsushita, and T. Kokubo, “Effect of heat treatments on apatite-forming ability of NaOH- and HCl-treated titanium metal,” Journal of Materials Science, vol. 22, no. 2, pp. 273–278, 2011.
[61]  J. H. Park, R. Olivares-Navarrete, R. E. Baier et al., “Effect of cleaning and sterilization on titanium implant surface properties and cellular response,” Acta Biomaterialia, vol. 8, no. 5, pp. 1966–1975, 2012.
[62]  R. A. Gittens, R. Olivares-Navarrete, A. Cheng, et al., “The roles of titanium surface micro/nanotopography and wettability on the differential response of human osteoblast lineage cells,” Acta Biomaterialia, vol. 9, no. 4, pp. 6268–6277, 2013.
[63]  Y. Shibata, M. Hosaka, H. Kawai, and T. Miyazaki, “Glow discharge plasma treatment of titanium plates enhances adhesion of osteoblast-like cells to the plates through the integrin-mediated mechanism,” International Journal of Oral and Maxillofacial Implants, vol. 17, no. 6, pp. 771–777, 2002.
[64]  T. Youngblood and J. L. Ong, “Effect of plasma-glow discharge as a sterilization of titanium surfaces,” Implant Dentistry, vol. 12, no. 1, pp. 54–60, 2003.
[65]  H. Kawai, Y. Shibata, and T. Miyazaki, “Glow discharge plasma pretreatment enhances osteoclast differentiation and survival on titanium plates,” Biomaterials, vol. 25, no. 10, pp. 1805–1811, 2004.
[66]  E. Czarnowska, J. Morgiel, M. Ossowski, R. Major, A. Sowinska, and T. Wierzchon, “Microstructure and biocompatibility of titanium oxides produced on nitrided surface layer under glow discharge conditions,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 10, pp. 8917–8923, 2011.
[67]  G. Giro, N. Tovar, L. Witek, et al., “Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants,” Journal of Biomedical Materials Research A, vol. 101, no. 1, pp. 98–103, 2013.
[68]  F. P. Guastaldi, D. Yoo, C. Marin, et al., “Plasma treatment maintains surface energy of the implant surface and enhances osseointegration,” International Journal of Biomaterials, vol. 2013, Article ID 354125, 6 pages, 2013.
[69]  B. Walivaara, B.-O. Aronsson, M. Rodahl, J. Lausmaa, and P. Tengvall, “Titanium with different oxides: in vitro studies of protein adsorption and contact activation,” Biomaterials, vol. 15, no. 10, pp. 827–834, 1994.
[70]  H. Aita, N. Hori, M. Takeuchi et al., “The effect of ultraviolet functionalization of titanium on integration with bone,” Biomaterials, vol. 30, no. 6, pp. 1015–1025, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133