全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Chitosan Nanoparticles as a Stable Drug Delivery System for Protein/siRNA

DOI: 10.1155/2013/146320

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chitosan nanoparticles (CS NPs) exhibit good physicochemical properties as drug delivery systems. The aim of this study is to determine the modulation of preparative parameters on the physical characteristics and colloidal stability of CS NPs. CS NPs were fabricated by ionic interaction with dextran sulphate (DS) prior to determination of their storage stability. The smallest CS NPs of ?nm with a surface charge of ?mV were produced when CS and DS were mixed at pH 4 and with a DS?:?CS mass ratio of 0.5?:?1. An entrapment efficiency of 98% was achieved when BSA/siRNA was loaded into the nanoparticles. The results also showed that particle size and surface charge of CS NPs were slightly changed up to 2 weeks when stored at 4°C. Greater particle size and surface charge were obtained with increasing the concentration of DS. In conclusion, NPs were sufficiently stable when kept at 4°C and able to carry and protect protein. 1. Introduction Endogenous peptides, protein, and oligonucleotides are among the main drugs which attract much attention because of their great potentials in treating chronic diseases [1]. However, the extreme in vivo environment of human body has always limited the therapeutic applications of these substances [2, 3]. Polymeric nanoparticles have attracted much attention as delivery systems due to their ability in overcoming the physiological barriers and protecting and targeting the loaded substances to specific cells [4, 5]. Naturally occurring polymers such as chitosan (CS) have been studied to form nanoparticles [6, 7]. CS is a biodegradable polysaccharide, and it is derived from deacetylation of chitin [8]. Apart from its biocompatibility, the low toxicity, hemostatic, and bacteriostatic properties also contribute to its various applications in pharmaceutical field [9–11]. Several anions have been investigated to crosslink CS like sodium sulphate [12] and dextran sulphate (DS) [13]. DS is able to modify protein and siRNA entrapment efficiency (EE) without the use of hardening agents and control the rate of drug release due to its high charge density [14]. Besides DS is a cheap material [15], it produces mechanically more stable nanoparticles compared to the pentasodium tripolyphosphate (TPP) [16, 17]. Several studies had reported the unique features of chitosan nanoparticles (CS NPs) using DS. However, the modulation of preparative parameters on their physical characteristics is still not fully investigated, for example, the influence of DS steric hindrance on the electrostatic attraction between CS and BSA [18]. Furthermore, the

References

[1]  K. Bowman and K. W. Leong, “Chitosan nanoparticles for oral drug and gene delivery,” International journal of nanomedicine, vol. 1, no. 2, pp. 117–128, 2006.
[2]  M. Terbojevich, A. Cosani, and R. A. A. Muzzarelli, “Molecular parameters of chitosans depolymerized with the aid of papain,” Carbohydrate Polymers, vol. 29, no. 1, pp. 63–68, 1996.
[3]  H. Devalapally, A. Chakilam, and M. M. Amiji, “Role of nanotechnology in pharmaceutical product development,” Journal of Pharmaceutical Sciences, vol. 96, no. 10, pp. 2547–2565, 2007.
[4]  R. Singh and J. W. Lillard, “Nanoparticle-based targeted drug delivery,” Experimental and Molecular Pathology, vol. 86, no. 3, pp. 215–223, 2009.
[5]  S. C. W. Richardson, H. V. J. Kolbe, and R. Duncan, “Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA,” International Journal of Pharmaceutics, vol. 178, no. 2, pp. 231–243, 1999.
[6]  Z. H. Liu, Y. P. Jia, Y. F. Wang, C. R. Zhou, and Z. Y. Zhang, “Polysaccharides-based nanoparticles as drug delivery systems,” Advanced Drug Delivery Reviews, vol. 60, no. 15, pp. 1650–1662, 2008.
[7]  V. Dodane and V. D. Vilivalam, “Pharmaceutical applications of chitosan,” Pharmaceutical Science and Technology Today, vol. 1, no. 6, pp. 246–253, 1998.
[8]  K. Kurita, “Chitin and chitosan: functional biopolymers from marine crustaceans,” Journal of Marine Biotechnology, vol. 8, no. 3, pp. 203–226, 2005.
[9]  F. Chellat, A. Grandjean-Laquerriere, R. Le Naour et al., “Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles,” Biomaterials, vol. 26, no. 9, pp. 961–970, 2005.
[10]  J. L. Zhang, J. N. Liu, L. Li, and W. H. Xia, “Dietary chitosan improves hypercholesterolemia in rats fed high-fat diets,” Nutrition Research, vol. 28, no. 6, pp. 383–390, 2008.
[11]  K. V. Harish Prashanth and R. N. Tharanathan, “Chitin/chitosan: modifications and their unlimited application potential—an overview,” Trends in Food Science and Technology, vol. 18, no. 3, pp. 117–131, 2007.
[12]  A. Berthold, K. Cremer, and J. Kreuter, “Preparation,” Journal of Controlled Release, vol. 39, no. 1, pp. 17–25, 1996.
[13]  W. Tiyaboonchai, J. Woiszwillo, R. C. Sims, and C. R. Middaugh, “Insulin containing polyethylenimine-dextran sulfate nanoparticles,” International Journal of Pharmaceutics, vol. 255, no. 1-2, pp. 139–151, 2003.
[14]  K. A. Janes, P. Calvo, and M. J. Alonso, “Polysaccharide colloidal particles as delivery systems for macromolecules,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 83–97, 2001.
[15]  T. Delair, “Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 78, no. 1, pp. 10–18, 2011.
[16]  T. López-León, E. L. S. Carvalho, B. Seijo, J. L. Ortega-Vinuesa, and D. Bastos-González, “Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 344–351, 2005.
[17]  P. Calvo, C. Remunan, J. J. L. Vila, and M. J. Alonso, “Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines,” Pharmaceutical Research, vol. 14, no. 10, pp. 1431–1436, 1997.
[18]  J. Qi, P. Yaoa, P. Heb, C. Yub, and C. Huang, “Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery,” International Journal of Pharmaceutics, vol. 393, no. 1-2, pp. 177–185, 2010.
[19]  Q. Gan and T. Wang, “Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release,” Colloids and Surfaces B, vol. 59, no. 1, pp. 24–34, 2007.
[20]  Y. Chen, V. J. Mohanraj, and J. E. Parkin, “Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide,” Letters in Peptide Science, vol. 10, no. 5-6, pp. 621–629, 2003.
[21]  Y. Chen, V. J. Mohanraj, F. Wang, and H. A. E. Benson, “Designing chitosan-dextran sulfate nanoparticles using charge ratios,” AAPS PharmSciTech, vol. 8, no. 4, pp. 131–139, 2007.
[22]  H. Katas and H. O. Alpar, “Development and characterisation of chitosan nanoparticles for siRNA delivery,” Journal of Controlled Release, vol. 115, no. 2, pp. 216–225, 2006.
[23]  S. M. Moghimi, “Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 103–115, 1995.
[24]  G. Storm, S. O. Belliot, T. Daemen, and D. D. Lasic, “Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system,” Advanced Drug Delivery Reviews, vol. 17, no. 1, pp. 31–48, 1995.
[25]  A. Hirano, T. Kawanami, and J. F. Llena, “Electron microscopy of the blood-brain barrier in disease,” Microscopy Research and Technique, vol. 27, no. 6, pp. 543–556, 1994.
[26]  S. K. Hobbs, W. L. Monsky, F. Yuan et al., “Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4607–4612, 1998.
[27]  S. Gao, J. Chen, L. Dong, Z. Ding, Y. Yang, and J. Zhang, “Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 60, no. 3, pp. 327–334, 2005.
[28]  X. G. Zhang, D. Y. Teng, Z. M. Wu et al., “PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 12, pp. 3525–3533, 2008.
[29]  X. G. Zhang, H. J. Zhang, Z. M. Wu, Z. Wang, H. M. Niu, and C. X. Li, “Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 68, no. 3, pp. 526–534, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133