Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236?g/L and 4.042?g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production. 1. Introduction Plastic materials that have been universally used in our daily lives are now causing serious environmental problems. Millions of tons of these nondegradable plastics accumulate in the environment per year. For efficient management of used-plastic materials, recycling is one solution. Another solution to reduce plastic residue is the use of biodegradable plastics [1, 2] and among them polyhydroxyalkanoic acids (PHAs) are drawing much attention. Polyhydroxyalkanoic acids (PHAs) are common intracellular compounds found in bacteria, archaea, and in few eukaryotes such as yeasts and fungi. PHAs are carbon and energy reserve polymers produced in some microorganisms when carbon source is in plentiful and other nutrients such as nitrogen, phosphorus, oxygen or sulfur are limited. PHAs are found to accumulate in varieties of microorganisms as reserve food material for example, Alcaligenes latus, Ralstonia eutropha, Azotobacter beijerinckii, Bacillus
References
[1]
D. Byrom, “Polymer synthesis by microorganisms: technology and economics,” Trends in Biotechnology, vol. 5, no. 9, pp. 246–250, 1987.
[2]
S. Y. Lee and H. N. Chang, “Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies,” Canadian Journal of Microbiology, vol. 41, no. 1, pp. 207–215, 1995.
[3]
B. Hazer and A. Steinbüchel, “Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications,” Applied Microbiology and Biotechnology, vol. 74, no. 1, pp. 1–12, 2007.
[4]
X. Gao, J. Chen, Q. Wu, and G. Chen, “Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels,” Current Opinion in Biotechnology, vol. 22, no. 6, pp. 768–774, 2011.
[5]
E. Rudnik, “Definitions, structures and methods of preparation,” in Compostable Polymer Materials, pp. 10–36, Elsevier, Amsterdam, The Netherlands, 1st edition, 2008.
[6]
J. Choi and S. Y. Lee, “Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation,” Bioprocess Engineering, vol. 17, no. 6, pp. 335–342, 1997.
[7]
I. M. Tamer, M. Moo-Young, and Y. Chisti, “Optimization of poly(β-hydroxybutyric acid) recovery from Alcaligenes latus: combined mechanical and chemical treatments,” Bioprocess Engineering, vol. 19, no. 6, pp. 459–468, 1998.
[8]
E. Grothe, M. Moo-Young, and Y. Chisti, “Fermentation optimization for the production of poly(β-hydroxybutyric acid) microbial thermoplastic,” Enzyme and Microbial Technology, vol. 25, no. 1-2, pp. 132–141, 1999.
[9]
T. Yamane, “Cultivation engineering of microbial bioplastics production,” FEMS Microbiology Reviews, vol. 103, no. 2–4, pp. 257–264, 1992.
[10]
T. Yamane, “Yield of poly-D(?)-3-hydroxybutyrate from various carbon sources: a theoretical study,” Biotechnology and Bioengineering, vol. 41, no. 1, pp. 165–170, 1993.
[11]
P. M. Halami, “Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06,” World Journal of Microbiology and Biotechnology, vol. 24, no. 6, pp. 805–812, 2008.
[12]
L. R. Castilho, D. A. Mitchell, and D. M. G. Freire, “Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation,” Bioresource Technology, vol. 100, no. 23, pp. 5996–6009, 2009.
[13]
M. L. Juan, L. W. Gonzalez, and G. C. Walker, “A novel screening method for isolating exopolysaccharide-deficient mutants,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4600–4602, 1998.
[14]
P. Spiekermann, B. H. A. Rehm, R. Kalscheuer, D. Baumeister, and A. Steinbüchel, “A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds,” Archives of Microbiology, vol. 171, no. 2, pp. 73–80, 1999.
[15]
G. Singh, A. Mittal, A. Kumari, V. Goel, N. K. Aggarwal, and A. Yadav, “Optimization of poly-B-hydroxybutyrate production from Bacillus species,” European Journal of Biological Sciences, vol. 3, no. 4, pp. 112–116, 2011.
[16]
J. Law and R. A. Slepecky, “Assay of poly-beta-hydroxybutyric acid,” Journal of Bacteriology, vol. 82, pp. 52–55, 1961.
[17]
I. Y. Lee, H. N. Chang, and Y. H. Park, “A simple method for recovery of microbial poly-3-hydroxybutyrate by alkaline solution treatment,” Journal of Microbiology and Biotechnology, vol. 5, no. 4, pp. 238–240, 1995.
[18]
G. Du, J. Chen, J. Yu, and S. Lun, “Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system,” Journal of Biotechnology, vol. 88, no. 1, pp. 59–65, 2001.
[19]
M. R. Zakaria, H. J. Ariffin, N. A. M. Aziz, S. A. Nishida, H. Y. Shirai, and M. A. Hassan, “Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172,” Polymer Degradation and Stability, vol. 95, no. 8, pp. 1382–1386, 2010.
[20]
A. Steinbüchel, “Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoats biosynethesis pathways as a successful example,” Macromolecular Bioscience, vol. 1, pp. 1–24, 2001.
[21]
M. Zinn, B. Witholt, and T. Egli, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 5–21, 2001.
[22]
J. Teeka, T. Imai, X. Cheng et al., “Screening of PHA producing bacteria using biodiesel-derived waste glycerol as a sole carbon source,” Journal of Water and Environment Technology, vol. 8, pp. 371–381, 2010.
[23]
H. Ramachandran and A. A. Abdullah, “Isolation of PHA-producing bacteria from Malaysian environment,” in Proceedings of the 7th IMT-GT UNINET and the 3rd International PSU-UNS Conferences on Bioscience, pp. 178–179, 2010.
[24]
S. Kitamura and Y. Doi, “Staining method of poly(3-hydroxyalkanoic acids) producing bacteria by nile blue,” Biotechnology Techniques, vol. 8, no. 5, pp. 345–350, 1994.
[25]
K. Cho, H. W. Ryu, C. Park, and P. R. Goodrich, “Poly(hydroxybutyrate-co-hydroxyvalerate) from swine waste liquor by Azotobacter vinelandii UWD,” Biotechnology Letters, vol. 19, no. 1, pp. 7–10, 1997.
[26]
J. Yu, “Production of PHA from starchy wastewater via organic acids,” Journal of Biotechnology, vol. 86, no. 2, pp. 105–112, 2001.
[27]
H. Salehizadeh and M. C. M. van Loosdrecht, “Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance,” Biotechnology Advances, vol. 22, no. 3, pp. 261–279, 2004.
[28]
J. M. L. Dias, P. C. Lemos, L. S. Serafim et al., “Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product,” Macromolecular Bioscience, vol. 6, no. 11, pp. 885–906, 2006.
[29]
N. Ceyhan and G. Ozdemir, “Poly-β-hydroxybutyrate (PHB) production from domestic wastewater using Enterobacter aerogenes 12Bi strain,” African Journal of Microbiology Research, vol. 5, no. 6, pp. 690–702, 2011.
[30]
K. J. Ganzeveld, A. Van Hagen, M. H. Van Agteren, W. De Koning, and A. J. M. S. Uiterkamp, “Upgrading of organic waste: production of the copolymer poly-3-hydroxybutyrate-co-valerate by Ralstonia eutrophus withorganic waste as sole carbon source,” Journal of Cleaner Production, vol. 7, no. 6, pp. 413–420, 1999.
[31]
M. N. Rao and A. K. Datta, Waste Water Treatment, pp. 203–208, Oxford and IBH Publishing, New Delhi, India, 2007.
[32]
G. H. John, N. R. Krieg, S. Peter, H. A. Staley, T. W. Satnley, and T. James, Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins, Philadelphia, Pa, USA, 9th edition, 2009.
[33]
M. F. da Silva, I. Tiago, A. Veríssimo, R. A. Boaventura, O. C. Nunes, and C. M. Manaia, “Antibiotic resistance of Enterococci and related bacteria in an urban wastewater treatment plant,” FEMS Microbiology Ecology, vol. 55, no. 2, pp. 322–329, 2005.
[34]
S. C. Jiang, W. Chu, B. H. Olson et al., “Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria,” Applied Microbiology and Biotechnology, vol. 76, no. 4, pp. 927–934, 2007.
[35]
M. V. Reddy and S. V. Mohan, “Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment,” Bioresource Technology, vol. 114, pp. 573–582, 2011.
[36]
A. Rani, S. Porwal, R. Sharma, A. Kapley, H. J. Purohit, and V. C. Kalia, “Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches,” Bioresource Technology, vol. 99, no. 15, pp. 7098–7107, 2008.
[37]
S. H. Ryu, M. Park, J. R. Lee, P. Yun, and C. O. Jeon, “Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 7, pp. 1561–1565, 2007.
[38]
C. Ruggeri, A. Franzetti, G. Bestetti et al., “Isolation and characterisation of surface active compound-producing bacteria from hydrocarbon-contaminated environments,” International Biodeterioration and Biodegradation, vol. 63, no. 7, pp. 936–942, 2009.
[39]
G. Tsiamis, G. Tzagkaraki, A. Chamalaki et al., “Olive-mill wastewater bacterial communities display a cultivar specific profile,” Current Microbiology, vol. 64, no. 2, pp. 197–203, 2012.
[40]
J. A. Silva, L. M. Tobella, J. Becerra, F. Godoy, and M. A. Martínez, “Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source,” Journal of Bioscience and Bioengineering, vol. 103, no. 6, pp. 542–546, 2007.
[41]
V. Tanamool, T. Imai, P. Danvirutai, and P. Kaewkannetra, “Biosynthesis of polyhydroxyalkanoate (PHA) by Hydrogenophaga sp. Isolated from soil environment during batch fermentation,” Journal of Life Sciences, vol. 5, no. 12, pp. 1003–1012, 2011.
[42]
A. Yezza, A. Halasz, W. Levadoux, and J. Hawari, “Production of poly-β-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap,” Applied Microbiology and Biotechnology, vol. 77, no. 2, pp. 269–274, 2007.
[43]
W. M. Pachekoski, J. A. M. Agnelli, and L. P. Belem, “Thermal, mechanical and morphological properties of poly (hydroxybutyrate) and polypropylene blends after processing,” Materials Research, vol. 12, no. 2, pp. 159–164, 2009.