Many studies have shown how intensification of farming is the main cause of loss biodiversity in these environments. During the last decades, agroecosystems in Europe have changed drastically, mainly due to mechanization of agriculture. In this work, species richness in bird communities was examined on a gradient of spatial heterogeneity of farmlands, in order to quantify its effects. Four categories of farmland spatial heterogeneity were defined, based on landscape and landuse parameters. The impact of features increasing the spatial heterogeneity was quantified comparing the similarity indexes between bird communities in several farmlands of Central Italy. The effects of environmental variables on bird richness were analyzed using GLM. The results highlighted that landscape features surrogates of high nature values (HNVs) of farmlands can increase more than 50% the bird species richness. The features more related to bird richness were hedgerows, scattered shrubs, uncultivated patches, and powerlines. The results confirm that the approach based on HNV for evaluating the farmlands is also suitable in order to study birds’ diversity. However, some species are more sensitive to heterogeneity, while other species occupy mainly homogeneous farmlands. As a consequence, different conservation methods must be considered for each farmland bird species. 1. Introduction Agricultural intensification is one of the main drivers of biodiversity decline. During the last twenty-five years a rapid and large scale change of the agricultural landscape occurred in Europe, caused by the intensification and mechanization of agricultural activities [1, 2], and for this reason understanding the relations between biodiversity and land-use intensity is quite important to developed effective plans for habitat conservation [3]. Many studies about biodiversity in agroecosystems usually faced the problem that both management type and landscapes features can affect it [4–6], but a quantification of the real impact of each of these factors on the composition of animal communities is complicated. Biodiversity in farmlands is affected by land-use management at a small spatial scale (grazing intensity or crop rotation) and also at a large spatial scale [3]. All of this is related to the presence and/or distribution of landscape features that may reflect a low fragmentation of the habitat, which is often called “functional heterogeneity,” and is very important in supporting biodiversity [7–11]. Many studies have shown that organic systems may enhance bird species diversity over nonorganic
References
[1]
D. E. Chamberlain, R. J. Fuller, R. G. H. Bunce, J. C. Duckworth, and M. Shrubb, “Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales,” Journal of Applied Ecology, vol. 37, no. 5, pp. 771–788, 2000.
[2]
P. F. Donald, R. E. Green, and M. F. Heath, “Agricultural intensification and the collapse of Europe's farmland bird populations,” Proceedings of the Royal Society B, vol. 268, no. 1462, pp. 25–29, 2001.
[3]
D. Kleijn, F. Kohler, A. Báldi et al., “On the relationship between farmland biodiversity and land-use intensity in Europe,” Proceedings of the Royal Society B, vol. 276, no. 1658, pp. 903–909, 2009.
[4]
A. C. Weibull, ?. ?stman, and ?. Granqvist, “Species richness in agroecosystems: the effect of landscape, habitat and farm management,” Biodiversity and Conservation, vol. 12, no. 7, pp. 1335–1355, 2003.
[5]
G. M. Siriwardena, H. Q. P. Crick, S. R. Baillie, and J. D. Wilson, “Agricultural land-use and the spatial distribution of granivorous lowland farmland birds,” Ecography, vol. 23, no. 6, pp. 702–719, 2000.
[6]
J. R. Krebs, J. D. Wilson, R. B. Bradbury, and G. M. Siriwardena, “The second silent spring?” Nature, vol. 400, no. 6745, pp. 611–612, 1999.
[7]
H. J. W. Vermeulen, “Corridor function of a road verge for dispersal of stenotopic heathland ground beetles Carabidae,” Biological Conservation, vol. 69, no. 3, pp. 339–349, 1994.
[8]
J. Hoffmann and J. M. Greef, “Mosaic indicators—theoretical approach for the development of indicators for species diversity in agricultural landscapes,” Agriculture, Ecosystems and Environment, vol. 98, no. 1-3, pp. 387–394, 2003.
[9]
T. G. Benton, J. A. Vickery, and J. D. Wilson, “Farmland biodiversity: is habitat heterogeneity the key?” Trends in Ecology and Evolution, vol. 18, no. 4, pp. 182–188, 2003.
[10]
F. Morelli, “Importance of road proximity for the nest site selection of the Red-backed shrike Lanius collurio in an agricultural environment in Central Italy,” Journal of Mediterranean Ecology, pp. 21–29, 2011.
[11]
F. Morelli, R. Santolini, and D. Sisti, “Breeding habitat of Red-backed Shrike Lanius collurio on farmland hilly areas of Central Italy: is functional heterogeneity an important key?” Ethology Ecology & Evolution, vol. 24, pp. 127–139, 2012.
[12]
L. Norton, P. Johnson, A. Joys et al., “Consequences of organic and non-organic farming practices for field, farm and landscape complexity,” Agriculture, Ecosystems and Environment, vol. 129, no. 1-3, pp. 221–227, 2009.
[13]
N. A. Beecher, R. J. Johnson, J. R. Brandle, R. M. Case, and L. J. Young, “Agroecology of birds in organic and nonorganic farmland,” Conservation Biology, vol. 16, no. 6, pp. 1620–1631, 2002.
[14]
Y. Kisel, L. Mcinnes, N. H. Toomey, and C. D. L. Orme, “How diversification rates and diversity limits combine to create large-scale species-area relationships,” Philosophical Transactions of the Royal Society B, vol. 366, no. 1577, pp. 2514–2525, 2011.
[15]
D. J. Pain and M. W. Pienkowski, Eds., Birds and Farming in Europe: The Common Agricultural Policy and Its Implications for Bird Conservation, Academic Press, San Diego, Calif, USA, 1997.
[16]
D. Kleijn and W. J. Sutherland, “How effective are European agri-environment schemes in conserving and promoting biodiversity?” Journal of Applied Ecology, vol. 40, no. 6, pp. 947–969, 2003.
[17]
A. Báldi and P. Batáry, “Spatial heterogeneity and farmland birds: different perspectives in Western and Eastern Europe,” Ibis, vol. 153, no. 4, pp. 875–876, 2011.
[18]
P. Batáry, A. Báldi, and S. Erd?s, “Grassland versus non-grassland bird abundance and diversity in managed grasslands: local, landscape and regional scale effects,” Biodiversity and Conservation, vol. 16, no. 4, pp. 871–881, 2007.
[19]
P. Batáry, J. Fischer, A. Báldi, T. O. Crist, and T. Tscharntke, “Does habitat heterogeneity increase farmland biodiversity?” Frontiers in Ecology and the Environment, vol. 9, no. 3, pp. 152–153, 2011.
[20]
R. Barbault, La Biodiversité: Introduction à la Biologie de la Conservation, Collection les Fondamentaux, Hachette, Paris, France, 1997.
[21]
C. J. Bibby, N. D. Burgess, and D. A. Hill, Bird Census Techniques, Academic Press, London, UK, 1997.
[22]
R. Clarke, Montagu's Harrier, Arlequin Press, Chelmsford, UK, 1996.
[23]
B. Arroyo, J. T. García, and V. Bretagnolle, “Conservation of the Montagu's harrier (Circus pygargus) in agricultural areas,” Animal Conservation, vol. 5, no. 4, pp. 283–290, 2002.
[24]
M. Brambilla, F. Casale, V. Bergero et al., “GIS-models work well, but are not enough: habitat preferences of Lanius collurio at multiple levels and conservation implications,” Biological Conservation, vol. 142, no. 10, pp. 2033–2042, 2009.
[25]
D. Baldock, G. Beaufoy, G. Bennett, and J. Clark, Nature Conservation and New Directions in the Common Agricultural Policy, Institute for European Environmental Policy, London, UK, 1993.
[26]
E. M. Bignal and D. I. McCracken, “Low-intensity farming systems in the conservation of the countryside,” Journal of Applied Ecology, vol. 33, no. 3, pp. 413–424, 1996.
[27]
E. Andersen, D. Baldock, H. Bennett, et al., “Developing a High Nature Value Farming area indicator,” Report for the European Environment Agency, Copenhagen, Denmark, 2003, http://www.ieep.eu/assets/646/Developing_HNV_indicator.pdf.
[28]
P. Pointereau, M. L. Paracchini, J.-M. Terres, F. Jiguet, Y. Bas, and K. Biala, “Identification of high nature value farmland in France through statistical information and farm practice surveys,” Report EUR 22786 EN, Office for Official Publications of the European Communities, Brussels, Luxembourg, 2007.
[29]
V. Peronace, J. G. Cecere, M. Gustin, and C. Rondinini, “Lista Rossa 2011 degli uccelli nidificanti in Italia,” Avocetta, vol. 36, pp. 11–58, 2012.
[30]
P. F. Donald and C. Forrest, “The effects of agricultural change on population size of corn buntings Miliaria calandra on individual farms,” Bird Study, vol. 42, no. 3, pp. 205–215, 1995.
[31]
R. H. G. Jongman, C. J. F. ter Braak, and O. F. R. Tongeren, Data Analysis in Community and Landscape Ecology, Cambridge University Press, Cambridge, UK, 1995.
[32]
P. McCullagh and J. A. Nelder, Generalized Linear Models, Chapman and Hall, London, UK, 1989.
[33]
H. Akaike, “A new look at the statistical model identification,” IEEE Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.
[34]
Anon, S-PLUS 2000 Guide to Statistics, vol. 1, MathSoft, Seattle, Wash, USA, 1999.
[35]
M. G. Betts, A. W. Diamond, G. J. Forbes, M. A. Villard, and J. S. Gunn, “The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence,” Ecological Modelling, vol. 191, no. 2, pp. 197–224, 2006.
[36]
J. Oksanen, F. G. Blanchet, R. Kindt, et al., “vegan: Community Ecology Package. R package version 2.0-6,” 2013, http://CRAN.R-project.org/package=vegan.
[37]
F. Morelli, “Plasticity of habitat selection by red-backed shrikes Lanius collurio breeding in different landscapes,” The Wilson Journal of Ornithology, vol. 124, pp. 52–57, 2012.
[38]
A. F. Bennett, J. Q. Radford, and A. Haslem, “Properties of land mosaics: implications for nature conservation in agricultural environments,” Biological Conservation, vol. 133, no. 2, pp. 250–264, 2006.
[39]
G. Beaufoy, D. Baldock, and J. Clark, The Nature of Farming: Low Intensity Farming Systems, in Nine European Countries, Institute for European Environmental Policy, London, UK, 1994.
[40]
EENRD/EC, “Guidance document. The application of the High Nature Value impact indicator. European Communities,” 2009, http://ec.europa.eu/agriculture/rurdev/eval/hnv/guidance_en.pdf.
[41]
M. L. Paracchini, J.-M. Terres, E. Petersen et al., “High nature value farmland in Europe. An estimate of the distribution patterns on the basis of land cover and biodiversity data. European Commission Joint Research Centre, Institute for Environment and Sustainability,” Report EUR 23480 EN, Office for Official Publications of the European Communities, Brussels, Luxembourg, 2008.
[42]
European Environment Agency, “High nature value farmland: characteristics, trends and policy challenges,” EEA Report No. 1/2004, Copenhagen, Denmark, 2004.
[43]
H. J. W. Vermeulen and P. F. M. Opdam, “Effectiveness of roadside verges as dispersal corridors for small ground-dwelling animals: a simulation study,” Landscape and Urban Planning, vol. 31, no. 1–3, pp. 233–248, 1995.
[44]
A. Bechet, P. Isenmann, and R. Gaudin, “Nest predation, temporal and spatial breeding strategy in the Woodchat Shrike Lanius senator in Mediterranean France,” Acta Oecologica, vol. 19, no. 1, pp. 81–87, 1998.
[45]
N. Lefranc, Les Pies-grieches d'Europa, d'Afrique du nord et du moyen-Orient, Delachaux et Niestlé S.A., Lausanne, Paris, France, 1993.
[46]
R. E. Harness and K. R. Wilson, “Electric-utility structures associated with raptor electrocutions in rural areas,” Wildlife Society Bulletin, vol. 29, no. 2, pp. 612–623, 2001.
[47]
K. Bevanger, “Biological and conservation aspects of bird mortality caused by electricity power lines: a review,” Biological Conservation, vol. 86, no. 1, pp. 67–76, 1998.
[48]
P. Clergeau, S. Croci, J. Jokim?ki, M. L. Kaisanlahti-Jokim?ki, and M. Dinetti, “Avifauna homogenisation by urbanisation: analysis at different European latitudes,” Biological Conservation, vol. 127, no. 3, pp. 336–344, 2006.
[49]
L. Fornasari, E. de Carli, L. Buvoli et al., “Secondo bollettino del progetto MITO2000: valutazioni metodologiche per il calcolo delle variazioni interannuali,” Avocetta, vol. 28, pp. 59–76, 2004.
[50]
S. Dale, “Causes of population decline of the Ortolan Bunting in Norway,” in Bunting Studies in Europe, P. Tryjanowski, T. S. Osiejuk, and M. Kupczyk, Eds., pp. 33–41, Bogucki Wydawnictwo Naukowe, Poznan, Poland, 2001.
[51]
P. F. Donald, F. J. Sanderson, I. J. Burfield, and F. P. J. van Bommel, “Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000,” Agriculture, Ecosystems and Environment, vol. 116, no. 3-4, pp. 189–196, 2006.
[52]
F. Morelli, “Correlations between landscape features and crop type and the occurrence of the Ortolan Bunting Emberiza hortulana in farmlands of Central Italy,” Ornis Fennica, vol. 89, pp. 264–272, 2012.
[53]
I. Newton, “The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions,” Ibis, vol. 146, no. 4, pp. 579–600, 2004.
[54]
G. M. Tucker and M. F. Heath, Birds in Europe: Their Conservation Status, BirdLife Conservation Series no. 3, BirdLife International, Cambridge, UK, 1994.
[55]
R. J. Lambeck, “Focal species: a multi-species umbrella for nature conservation,” Conservation Biology, vol. 11, no. 4, pp. 849–856, 1997.
[56]
M. J. Whittingham and K. L. Evans, “The effects of habitat structure on predation risk of birds in agricultural landscapes,” Ibis, vol. 146, no. 2, pp. 210–220, 2004.
[57]
P. Tryjanowski, T. Hartel, A. Báldi et al., “Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe,” Acta Ornithologica, vol. 46, no. 1, pp. 1–12, 2011.