Sundarbans, the world's largest mangrove ecosystem, is unique and biologically diverse. A study was undertaken to track temporal succession of phytoplankton assemblages at the generic level (≥10?μm) encompassing 31 weeks of sampling (June 2010–May 2011) in Sundarbans based on microscopy and hydrological measurements. As part of this study, amplification and sequencing of type ID rbcL subunit of RuBisCO enzyme were also applied to infer chromophytic algal groups (≤10?μm size) from one of the study points. We report the presence of 43 genera of Bacillariophyta, in addition to other phytoplankton groups, based on microscopy. Phytoplankton cell abundance, which was highest in winter and spring, ranged between 300 and 27,500?cells/L during this study. Cell biovolume varied between winter of 2010 (90–35281.04?μm3) and spring-summer of 2011 (52–33962.24?μm3). Winter supported large chain forming diatoms, while spring supported small sized diatoms, followed by other algal groups in summer. The clone library approach showed dominance of Bacillariophyta-like sequences, in addition to Cryptophyta-, Haptophyta-, Pelagophyta-, and Eustigmatophyta-like sequences which were detected for the first time highlighting their importance in mangrove ecosystem. This study clearly shows that a combination of microscopy and molecular tools can improve understanding of phytoplankton assemblages in mangrove environments. 1. Introduction The most implicit elements of the global carbon cycle are those involving the coastal environments that embrace a great variety of habitats including mangroves which are located in tropical and subtropical regions of the world. These ecosystems are known to account for 14–30% of the marine primary production [1] and annual sequestration of approximately 22.8 million metric tons of carbon [2]. Phytoplankton forms the basis of the aquatic primary production in mangrove environments. These photosynthetic organisms are major contributors of high fish productivity in mangrove habitats [3]. Approximately 41% of the world’s mangrove occurs in South and Southeast Asia, out of which Indonesia alone accounts for 23% [4]. Sundarbans (21°32′ and 22°40′?N; 88°05′ and 89°E), world’s largest contiguous deltaic mangrove ecosystem located at the apex of Bay of Bengal, encompasses over 102 islands with a network of innumerable rivers, rivulets, and creeks. This vast deltaic region is formed at the estuarine phase of the Ganges-Brahmaputra and Meghna river system across India and Bangladesh covering a total area of approximately 10,000?km2 and tidally influenced by
References
[1]
R. E. C. Mantoura, J. M. Martin, and R. Wollast, Ocean Margin Processes in Global Change, John Wiley & Sons, Chichester, UK, 1991.
[2]
C. Giri, E. Ochieng, L. L. Tieszen et al., “Status and distribution of mangrove forests of the world using earth observation satellite data,” Global Ecology and Biogeography, vol. 20, no. 1, pp. 154–159, 2011.
[3]
A. I. Robertson and S. Blaber, “Plankton, epibenthos and fish communities,” in Tropical Mangrove Ecosystems, A. I. Robertson and D. M. Alongi, Eds., American Geophysical Union, Washington, DC, USA, 1992.
[4]
M. Spalding, F. Blasco, and F. Field, World Mangrove Atlas, The International Society for Mangrove Ecosystems, Okinawa, Japan, 1997.
[5]
P. Bhadury, “Planktons,” in Environmental Management and Biodiversity Conservation Plan For Sundarbans Biodiversity: State of the Report, A. K. Ghosh, Ed., WWF-India and World Bank, 2013.
[6]
M. M. Mamun, M. G. Sarower, M. A. Ali, S. M. B. Rahman, and K. A. Huq, “Abundance and distribution of plankton in the Sundarbans mangrove Forest,” Journal of Innovation and Development Strategy, vol. 3, no. 3, pp. 43–54, 2009.
[7]
H. Biswas, M. Dey, D. Ganguly, T. K. De, S. Ghosh, and T. K. Jana, “Comparative analysis of phytoplankton composition and abundance over a two-decade period at the land-ocean boundary of a tropical mangrove ecosystem,” Estuaries and Coasts, vol. 33, no. 2, pp. 384–394, 2010.
[8]
S. Manna, K. Chaudhuri, S. Bhattacharyya, and M. Bhattacharyya, “Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves,” Saline Systems, vol. 6, no. 1, article 8, 2010.
[9]
S. B. Saha, S. B. Bhattacharyya, and A. Choudhury, “Photosynthetic activity in relation to hydrobiological characteristics of a brackishwater tidal ecosystem of Sundarbans in West Bengal, India,” Tropical Ecology, vol. 42, no. 1, pp. 111–115, 2001.
[10]
R. Massana, J. Castresana, V. Balagué et al., “Phylogenetic and ecological analysis of novel marine stramenopiles,” Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3528–3534, 2004.
[11]
N. J. Fuller, C. Campbell, D. J. Allen et al., “Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids,” Aquatic Microbial Ecology, vol. 43, no. 1, pp. 79–93, 2006.
[12]
F. R. Tabita, “Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective,” Photosynthesis Research, vol. 60, no. 1, pp. 1–28, 1999.
[13]
G. M. F. Watson and F. R. Tabita, “Regulation, unique gene organization, and unusual primary structure of carbon fixation genes from a marine phycoerythrin-containing cyanobacterium,” Plant Molecular Biology, vol. 32, no. 6, pp. 1103–1115, 1996.
[14]
J. H. Paul, A. Alfreider, and B. Wawrik, “Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico,” Marine Ecology Progress Series, vol. 198, pp. 9–18, 2000.
[15]
B. Wawrik, J. H. Paul, L. Campbell et al., “Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico,” Marine Ecology Progress Series, vol. 251, pp. 87–101, 2003.
[16]
P. Bhadury and B. B. Ward, “Molecular diversity of marine phytoplankton communities based on key functional genes,” Journal of Phycology, vol. 45, no. 6, pp. 1335–1347, 2009.
[17]
K. N. Mukherjee, “Nature and problems of neoreclamation in the Sundarbans,” Indian Journal of Landscape Systems and Ecological Studies, vol. 6, pp. 1–19, 1983.
[18]
X. L. Verlencar and S. Desai, Phytoplankton Identification Manual, NIO, Goa, India, 2004.
[19]
R. Subrahmanyan, “A systematic account of the marine plankton diatoms of the Madras coast,” Proceedings of the Indian Academy of Sciences B, vol. 24, no. 4, pp. 85–197, 1946.
[20]
T. V. Desikachary, Cyanophyta, Indian Council of Agricultural Research, New Delhi, India, 1959.
[21]
T. V. Desikachary, Atlas of Diatoms, Monographs fasicle II, III and IV, Madras Science Foundation, Madras, India, 1987.
[22]
H. Hillebrand, C.-D. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary, “Biovolume calculation for pelagic and benthic microalgae,” Journal of Phycology, vol. 35, no. 2, pp. 403–424, 1999.
[23]
D. Bhattacharjee, B. Samanta, A. Danda, and P. Bhadury, “Understanding the impact of climate change in the Sundarbans aquatic ecosystem-phytoplankton as proxies,” in Climate Change and Island and Coastal Vulnerability, J. Sundaresan, S. Sreekesh, A. Ramanathan, L. Sonnenschein, and R. Boojih, Eds., pp. 126–140, Springer, 2013.
[24]
M. S. Finch, D. J. Hydes, C. H. Clayson, B. Weigl, J. Dakin, and P. Gwilliam, “A low power ultra violet spectrophotometer for measurement of nitrate in seawater: introduction, calibration and initial sea trials,” Analytica Chimica Acta, vol. 377, no. 2-3, pp. 167–177, 1998.
[25]
J. D. H. Strickland and T. R. Parsons, A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, Ottawa, Canada, 1972.
[26]
R. E. Turner, N. Qureshi, N. N. Rabalais et al., “Fluctuating silicate:nitrate ratios and coastal plankton food webs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13048–13051, 1998.
[27]
C. J. Lorenzen, “A method for the continuous measurement of in vivo chlorophyll concentration,” Deep-Sea Research and Oceanographic Abstracts, vol. 13, no. 2, pp. 223–227, 1966.
[28]
K. H. Bostr?m, K. Simu, ?. Hagstr?m, and L. Riemann, “Optimization of DNA extraction for quantitative marine bacterioplankton community analysis,” Limnology and Oceanography: Methods, vol. 2, pp. 365–373, 2004.
[29]
B. Wawrik, J. H. Paul, and F. R. Tabita, “Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes,” Applied and Environmental Microbiology, vol. 68, no. 8, pp. 3771–3779, 2002.
[30]
N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987.
[31]
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 29, no. 2, pp. 457–472, 2011.
[32]
J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.
[33]
P. D. Schloss and J. Handelsman, “Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness,” Applied and Environmental Microbiology, vol. 71, no. 3, pp. 1501–1506, 2005.
[34]
T. U. Chan and D. P. Hamilton, “Effect of freshwater flow on the succession and biomass of phytoplankton in a seasonal estuary,” Marine and Freshwater Research, vol. 52, no. 6, pp. 869–884, 2001.
[35]
A. Banerjee and S. C. Santra, “Plankton population and population density of the Sundarbans mangrove estuary of West Bengal (India),” in Sundarbans Mangal, D. N. Guha Bakshi, P. Sanyal, and K. R. Naskar, Eds., Naya Prokash, Calcutta, India, 1999.
[36]
H. Biswas, S. K. Mukhopadhyay, T. K. De, S. Sen, and T. K. Jana, “Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India,” Limnology and Oceanography, vol. 49, no. 1, pp. 95–101, 2004.
[37]
P. E. Campbell, J. A. Manning, M. K. Webber, and D. F. Webber, “Planktonic communities as indicators of water quality in mangrove lagoons; a Jamaican case study,” Transitional Waters Bulletin, vol. 3, pp. 39–63, 2008.
[38]
P. J. Harrison, N. Khan, K. Yin et al., “Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River delta, Pakistan,” Marine Ecology Progress Series, vol. 157, pp. 13–19, 1997.
[39]
K. Tanaka and P.-S. Choo, “Influences of nutrient outwelling from the Mangrove swamp on the distribution of phytoplankton in the Matang Mangrove Estuary, Malaysia,” Journal of Oceanography, vol. 56, no. 1, pp. 69–78, 2000.
[40]
V. V. Dham, M. Wafar, and A. M. Heredia, “Nitrogen uptake by size-fractionated phytoplankton in mangrove waters,” Aquatic Microbial Ecology, vol. 41, no. 3, pp. 281–291, 2005.
[41]
F. Sylvestre, D. Guiral, and J. P. Debenay, “Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana),” Marine Geology, vol. 208, no. 2-4, pp. 281–293, 2004.
[42]
P. K. Bienfang and P. J. Harrison, “Sinking-rate response of natural assemblages of temperate and subtropical phytoplankton to nutrient depletion,” Marine Biology, vol. 83, no. 3, pp. 293–300, 1984.
[43]
L. A. Deegan and R. H. Garritt, “Evidence for spatial variability in estuarine food webs,” Marine Ecology Progress Series, vol. 147, no. 1–3, pp. 31–47, 1997.
[44]
H.-L. Hsieh, C.-P. Chen, Y.-G. Chen, and H.-H. Yang, “Diversity of benthic organic matter flows through polychaetes and crabs in a mangrove estuary: δ13C and δ34S signals,” Marine Ecology Progress Series, vol. 227, pp. 145–155, 2002.
[45]
S. Soe-modihardjo, “Indonesia,” in Technical Report of the UNDP/UNESCO Research and Training Pilot Programme on Mangrove Ecosystems in Asia and the Pacific, R. M. Umali, P. M. Zamora, R. R. Gotera, R. S. Jara, A. S. Kamacho, and M. Vannucci, Eds., Natural Resources Management Centre and National Mangrove Committee, Ministry of Natural Resources, Manila, Philippines, 1987.
[46]
D. M. Alongi, K. G. Boto, and A. I. Robertson, “Nitrogen and phosphorus cycles,” in Tropical Mangrove Ecosystems, A. I. Robertson and D. M. Alongi, Eds., pp. 251–292, American Geophysical Union, Washington, DC, USA, 1992.
[47]
E. L. Quinlan and E. J. Phlips, “Phytoplankton assemblages across the marine to low-salinity transition zone in a blackwater dominated estuary,” Journal of Plankton Research, vol. 29, no. 5, pp. 401–416, 2007.
[48]
N. Revelante and M. Gilmartin, “The effect of Po river discharge on phytoplankton dynamics in the Northern Adriatic Sea,” Marine Biology, vol. 34, no. 3, pp. 259–271, 1976.
[49]
M. W. Wong and D. W. Townsend, “Phytoplankton and hydrography of the Kennebec estuary, Maine, USA,” Marine Ecology Progress Series, vol. 178, pp. 133–144, 1999.
[50]
K. Yin, P.-Y. Qian, J. C. Chen, D. P. H. Hsieh, and P. J. Harrison, “Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation,” Marine Ecology Progress Series, vol. 194, pp. 295–305, 2000.
[51]
N. A. Aizdaicher and Z. V. Markina, “The effect of decrease in salinity on the dynamics of abundance and the cell size of Corethron hystrix (Bacillariophyta) in laboratory culture,” Ocean Science Journal, vol. 45, no. 1, pp. 1–5, 2010.
[52]
K. G. Porter, “The plant-animal interface in freshwater ecosystems,” American Scientist, vol. 65, pp. 159–170, 1977.
[53]
R. Margalef, “Life forms of phytoplankton as survival alternatives in an unstable environment,” Oceanologica Acta, vol. 1, no. 4, pp. 493–509, 1978.
[54]
R. E. H. Smith and J. Kalff, “Competition for phosphorus among co-occurring freshwater phytoplankton,” Limnology and Oceanography, vol. 28, no. 3, pp. 448–464, 1983.
[55]
A. K. Mandal, The Sundarbans of India: A Development Analysis, Indus Publishing Company, New Delhi, India, 2003.
[56]
J. O. Olomukoro and C. Oronsaye, “The plankton studies of the gulf of Guinea, Nigeria,” Bioscience Research Communications, vol. 21, pp. 71–75, 2009.
[57]
M. B. Kutner, “Seasonal variation and phytoplankton distribution in Cananeia region, Brazil,” in Proceedings of the International Symposium on the Biology and Management of Mangroves, G. E. Walsh, S. C. Snedaker, and H. J. Teas, Eds., pp. 153–169, University of Florida, Honolulu, Hawaii, USA, 1975.
[58]
M. Ricard, “Primary production in mangrove lagoon waters,” in Hydrobiology of the Mangal, F. D. Por and I. Dor, Eds., Dr. W Junk Publishers, Hague, The Netherlands, 1984.
[59]
J. Tundisi, T. M. Tundisi, and M. B. Kutner, “Plankton studies in a mangrove environment. VIII. Further investigations on primary production, standing-stock of phyto- and zooplankton and some environmental factors,” International Review of Hydrobiology, vol. 58, no. 6, pp. 925–940, 1973.
[60]
G. B. McManus, “Phytoplankton abundance and pigment changes during simulated in situ dilution experiments in estuarine waters: possible artifacts caused by algal light adaptation,” Journal of Plankton Research, vol. 17, no. 8, pp. 1705–1716, 1995.
[61]
E. Valenzuela-Espinoza, R. Millan-Nunez, C. C. Trees, E. Santamaria-del-Angel, and F. Nunez-Cebrero, “Growth and accessory pigments to chlorophyll a ratios of Thalassiosira pseudonana (Bacillariophyceae) cultured under different irradiances,” Hydrobiologia, vol. 17, no. 3, pp. 249–255, 2007.
[62]
R. J. Stevenson, “Epilithic and epipelic diatoms in the Sandusky River, with emphasis on species diversity and water pollution,” Hydrobiologia, vol. 114, no. 3, pp. 161–175, 1984.
[63]
D. L. Tison and E. W. Wilde, “Primary production and biovolume of various phototrophic plankton size fraction in three southeastern United States reservoirs,” Applied and Environmental Microbiology, vol. 41, no. 4, pp. 1055–1059, 1981.
[64]
K. Chaudhuri, S. Manna, K. S. Sarma, P. Naskar, S. Bhattacharyya, and M. Bhattacharyya, “Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India,” Aquatic Biosystems, vol. 8, no. 26, pp. 1–6, 2012.
[65]
Y. Takahashi, K. Takishita, K. Koike et al., “Development of molecular probes for Dinophysis (Dinophyceae) plastid: a tool to predict blooming and explore plastid origin,” Marine Biotechnology, vol. 7, no. 2, pp. 95–103, 2005.
[66]
P. Bhadury, B. Song, and B. B. Ward, “Intron features of key functional genes mediating nitrogen metabolism in marine phytoplankton,” Marine Genomics, vol. 4, no. 3, pp. 207–213, 2011.