全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Acacia sieberiana Effects on Soil Properties and Plant Diversity in Songa Pastures, Rwanda

DOI: 10.1155/2013/237525

Full-Text   Cite this paper   Add to My Lib

Abstract:

Effects of A. sieberiana trees on soil properties and plant diversity were investigated in Songa pastures, Rwanda. Tree characteristics and crown architecture of A. sieberiana were studied. Soil properties were assessed and plants were identified under and away from tree crowns. Counts of individual plants/species were done only under tree crowns. Nitrogen, P, and K were analysed in the soil, grass, and A. sieberiana leaves. Plant diversity was determined using Simpson's diversity index. Data were subjected to ANOVA. Soil organic carbon (SOC), cation exchange capacity (CEC), Ca2+, N and pH, and plant diversity were higher in soils under tree canopies than in open areas. Tree leaves were significantly richer in N and poorer in P and K as compared to grasses. Tree crowns grew wider and horizontal and developed intertwined secondary branching, reducing light intensity to as low as 38% under tree canopies compared to the open pasture. At 3 trees/ha stocking, A. sieberiana trees shaded 0.18?ha and herbaceous plants and grasses unpalatable to livestock dominated under tree canopies. A tradeoff of A. sieberiana tree value versus the loss of palatable grass due to tree presence needs to be assessed to decide whether the trees should be included in pastures and if yes, the apporpriate stocking identified. 1. Introduction The incorporation or retention of trees into farming systems is an old tradition in Africa. This makes a basis of what is often referred to as agroforestry [1]. Trees in such systems fulfil a lot of functions and services [2]. They may provide shelter to soils, plants, and livestock and may increase soil organic matter and sometimes soil nitrogen content. Being perennial, tree functions and their influence on the site may be cumulative [3]. A few or a group of trees are usually left deliberately or planted on land under some other main use in which case trees fulfil a secondary role [4]. It is well known that some trees may deplete soil resources and this is more severe with some exotic species, for example, Eucalyptus [5], which compete with other plants for soil moisture [5–7] and for soil nutrients [8–10]. More often, some tree species negatively interfere with biodiversity, leading to a decline in plant diversity [11]. This tendency is sometimes attributed to allelopathy [12–14]. Some plant species may improve soil properties [15] and yet deplete biodiversity. Even the best trees in soil improvement may be detrimental to biodiversity, especially when planted at a narrow spacing where the reduction in the amount of light reaching the ground

References

[1]  M. A. Gold, W. J. Rietveld, H. E. Garrett, and R. F. fisher, “Agroforestry nomenclature, concepts, and practices for the USA,” in North American Agroforestry: An Integrated Science and Practice, H. E. Garrett, W. J. Rietveld, and R. F. Fisher, Eds., pp. 63–76, ASA, Madison, Wis, USA, 2000.
[2]  E. Munyanziza, “Agroforestry systems, tree species composition and its effect on ectomycorrhizal fungal diversity in Africa,” in Modern Approaches and Innovations in Soil Management, D. J. Bagyaraj, A. Verma, K. K. Khanna, and H. K. Kehri, Eds., pp. 91–103, Rastogi Publications, Meerrut, India, 1999.
[3]  S. Díaz, J. G. Hodgson, K. Thompson et al., “The plant traits that drive ecosystems: evidence from three continents,” Journal of Vegetation Science, vol. 15, no. 3, pp. 295–304, 2004.
[4]  D. J. Eldridge and V. N. L. Wong, “Clumped and isolated trees influence soil nutrient levels in an Australian temperate box woodland,” Plant and Soil, vol. 270, no. 1, pp. 331–342, 2005.
[5]  S. Kidanu, T. Mamo, and L. Stoosnijder, “Biomass production of Eucalyptus boundary and their effect on crop productivity on Ethiopian highland Vertisols,” Agroforestry Systems, vol. 63, pp. 281–290, 2005.
[6]  J. M. Albaugh, P. J. Dye, and J. S. King, “Eucalyptus and water use in South Africa,” International Journal of Forestry Research, vol. 2013, Article ID 852540, 11 pages, 2013.
[7]  D. I. Forrester, S. Theiveyanathan, J. J. Collopy, and N. E. Marcar, “Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation,” Forest Ecology and Management, vol. 259, no. 9, pp. 1761–1770, 2010.
[8]  L. B. Guo, R. E. H. Sims, and D. J. Horne, “Biomass production and nutrient cycling in Eucalyptus short rotation energy forests in New Zealand. I: biomass and nutrient accumulation,” Bioresource Technology, vol. 85, no. 3, pp. 273–283, 2002.
[9]  R. B. Harrison, G. G. Reis, M. D. G. F. Reis, A. L. Bernardo, and D. J. Firme, “Effect of spacing and age on nitrogen and phosphorus distribution in biomass of Eucalyptus camaldulensis, Eucalyptus pellita and Eucalyptus urophylla plantations in southeastern Brazil,” Forest Ecology and Management, vol. 133, no. 3, pp. 167–177, 2000.
[10]  R. K. Gupta, Multipurpose Trees for Agroforestry and Wasteland Utilisation, International Science Publisher, New York, NY, USA, 1993.
[11]  C. Huttel and J. L. Loumeto, “Effect of exotic tree plantations and site management on plant diversity,” in Effect of Exotic Tree Plantations on Plant Diversity and Biological Soil Fertility in the Congo Savanna: With Special Reference to Eucalypts, F. Bernhard-Reversat, Ed., pp. 9–18, Center for International Forestry Research, Bogor, Indonesia, 2001.
[12]  A. E. Hartemink, “Assessing soil fertility decline in the tropics using soil chemical data,” Advances in Agronomy, vol. 89, pp. 179–225, 2006.
[13]  K. I. Paul, P. J. Polglase, J. G. Nyakuengama, and P. K. Khanna, “Change in soil carbon following afforestation,” Forest Ecology and Management, vol. 168, no. 1–3, pp. 241–257, 2002.
[14]  N. Lisanework and A. Michelsen, “Allelopathy in agroforestry systems: the effects of leaf extracts of Cupressus lusitanica and three Eucalyptus spp. on four Ethiopian crops,” Agroforestry Systems, vol. 21, no. 1, pp. 63–74, 1993.
[15]  S. J. Milton and W. R. J. Dean, “How useful is the keystone species concept, and can it be applied to Acacia erioloba in the Kalahari Desert?” Zeitschrift für Okologie und Naturschutz, vol. 4, no. 3, pp. 147–156, 1995.
[16]  FAO, “Global forest resource assessment, 2005. FAO forestry paper 147. Kenya forestry service, 2009,” in A Guide to on-Farm Eucalyptus Growing in Kenya, Kenya Forestry Service, Nairobi, Kenya, 2006.
[17]  C. J. Borough, “Control of soil acidity,” in Trees for Rural Australia, K. W. Cremer, Ed., pp. 34–41, Inkata Press, Melbourne, Australia, 1990.
[18]  G. Cadisch, P. de Willigen, D. Suprayogo, D. C. Mobs, M. van Noordwijk, and E. C. Rowe, “Catching and competing for mobile nutrients in soils,” in Below Ground Interactions in Tropical Agroecosysytems: Concepts and Models with Multiple Plant Components, M. van Noordwijk, G. Cadisch, and C. K. Ong, Eds., pp. 171–191, CABI, Cambridge, UK, 2004.
[19]  M. van Noordwijk, G. Lawson, A. Soumare, J. Groot Jr., and K. Hairiah, “Root distribution of trees and crops: competition and/or complementarity,” in Tree-Crop Interactions: A Physiological Approach, C. K. Ong and P. Huxley, Eds., pp. 319–364, Wallingford, UK, CABI edition, 1996.
[20]  P. J. Ryan and J. W. McGarity, “The nature and spatial variability of soil properties adjacent to large forest eucalypts,” Soil Science Society of America Journal, vol. 47, no. 2, pp. 286–293, 1983.
[21]  D. J. Munnich, P. C. Simpson, and H. Nicol, “A survey of native grasses in the Goulburn district and factors influencing their abundance,” Rangeland Journal, vol. 13, pp. 118–129, 1991.
[22]  C. B. Pandey and D. K. Sharma, “Residual effect of nitrogen on rice productivity following tree removal of Acacia nilotica in a traditional agroforestry system in central India,” Agriculture, Ecosystems and Environment, vol. 96, no. 1–3, pp. 133–139, 2003.
[23]  H. H. Hansen, L. Sanou, and B. M. I. Nacoulma, “Tree leaves in the diet of free ranging ruminants in three areas of Burkina Faso,” Livestock Research for Rural Development, vol. 20, article 33, 2008.
[24]  J. J. Ewel, “Natural systems as models for the design of sustainable systems of land use,” Agroforestry Systems, vol. 45, no. 1–3, pp. 1–21, 1999.
[25]  A. Woodward and J. D. Reed, “The influence of polyphenolics on the nutritive value of browse: a summary of research conducted at ILCA,” International Livestock Centre for Africa Bulletin, vol. 35, pp. 2–11, 1989.
[26]  R. Tiedemann and J. O. Klemmedson, “Nutrient availability in desert grassland soils under mesquite (Prosopis juliflora) trees and adjacent open areas,” Soil Science Society of America Proceedings, vol. 37, pp. 107–111, 1993.
[27]  A. J. Belsky, S. M. Mwonga, R. G. Amundson, J. M. Duxbury, and A. R. Ali, “Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall savannas,” Journal of Applied Ecology, vol. 30, no. 1, pp. 143–155, 1993.
[28]  R. Everett, S. Sharrow, and D. Thran, “Soil nutrient distribution under and adjacent to singleleaf pinyon crowns,” Soil Science Society of America Journal, vol. 50, no. 3, pp. 788–792, 1986.
[29]  A. J. Dowling, A. A. Webb, and J. C. Scanlan, “Surface soil chemical and physical patterns in a brigalow-Dawson gum forest, central Queensland,” Australian Journal of Ecology, vol. 11, no. 2, pp. 155–162, 1986.
[30]  K. M. Dunham, “Litterfall, nutrient-fall and production in an Acacia albida woodland in Zimbabwe,” Journal of Tropical Ecology, vol. 5, no. 2, pp. 227–238, 1989.
[31]  H. B. Waldon, M. B. Jenskins, R. A. Virginia, and E. E. Harding, “Characteristics of woodland rhizobial populations from surface- and deep-soil enviroments of the Sonoran Desert,” Applied and Environmental Microbiology, vol. 55, no. 12, pp. 3058–3064, 1989.
[32]  S. Puri, S. Singh, and A. Kumar, “Growth and productivity of crops in association with an Acacia nilotica tree belt,” Journal of Arid Environments, vol. 27, no. 1, pp. 37–48, 1994.
[33]  J. B. Nduwayezu, C. K. Ruffo, V. Minani, E. Munyaneza, and S. Nshutiyayesu, Know Some Useful Trees and Shrubs for Agricultural and Pastoral Communities of Rwanda, IRST, Butare, Rwanda; Pallotti Press, Kigali, Rwanda, 2009.
[34]  M. Manzi, J. Owino Junga, C. Ebong, and R. O. Mosi, “Factors affecting pre and post-weaning growth of six cattle breed groups at songa research station in Rwanda,” Livestock Research for Rural Development, vol. 24, article 68, 2012.
[35]  G. Delepierre, “Les regions agricoles du Rwanda,” Bulletin Agricole du Rwanda, vol. 8, pp. 216–225, 1975.
[36]  J. R. Okalebo, K. W. Gathua, and P. L. Woomer, Laboratory Methods of Soil Analysis: A Working Manual, TSBF-CIAT and SAGRED Africa, Nairobi, Kenya, 2nd edition, 2002.
[37]  P. E. V. Charman and M. M. Roper, “Soil organic matter,” in Soils: Their Properties and Management, pp. 260–269, Oxford University Press, Melbourne, Australia, 2000.
[38]  A. Golchin, P. Clarke, J. M. Oades, and J. O. Skjemstad, “The effects of cultivation on the composition of organic matter and structural stability of soils,” Australian Journal of Soil Research, vol. 33, no. 6, pp. 975–993, 1995.
[39]  P. A. Sanchez, “Science in agroforestry,” Agroforestry Systems, vol. 30, no. 1-2, pp. 5–55, 1995.
[40]  M. C. Sirois, H. A. Margolis, and C. Camiré, “Influence of remnant trees on nutrients and fallow biomass in slash and burn agroecosystems in Guinea,” Agroforestry Systems, vol. 40, no. 3, pp. 227–246, 1998.
[41]  A. Verdoodt and E. van Ranst, “The soil information system of Rwanda: a useful tool to identify guidelines towards sustainable land management,” Africa Focus, vol. 19, pp. 69–92, 2006.
[42]  P. Vander Zaag, R. S. Yost, B. B. Trangmar, K. Hayashi, and R. L. Fox, “An assessment of chemical properties for soils of Rwanda with the use of geostatistical techniques,” Geoderma, vol. 34, no. 3-4, pp. 293–314, 1984.
[43]  K. R. Helyar, P. D. Cregan, and D. L. Godyn, “Soil acidity in New South Wales—current pH values and estimates of acidification rates,” Australian Journal of Soil Research, vol. 28, no. 4, pp. 523–537, 1990.
[44]  B. Wilson, “Influence of scattered paddock trees on surface soil properties: a study of the Northern tablelands of NSW,” Ecological Management and Restoration, vol. 3, no. 3, pp. 211–219, 2002.
[45]  A. Young, Agroforestry for Soil Management, CABI, Wallingford, UK, 1997.
[46]  A. J. Belsky, “Influences of trees on savanna productivity: tests of shade, nutrients, and tree-grass competition,” Ecology, vol. 75, no. 4, pp. 922–932, 1994.
[47]  C. Orwa, A. Mutua, R. Kindt, R. Jamnadass, and S. Anthony, “Agroforestree Database tree reference and selection guide version 4.0,” 2009, http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.
[48]  G. P. Berlin and J. Cho, “Light, moisture and nutrient use by plants,” in The Silvicultural Basis for Agroforestry Systems, M. S. Ashton and F. Montagnini, Eds., pp. 9–39, CRC Press, Washington, DC, USA, 2000.
[49]  P. M. S. Ashton and G. P. Berlyn, “Leaf adaptations of some Shorea species to sun and shade,” New Phytologist, vol. 121, no. 4, pp. 587–596, 1992.
[50]  P. M. S. Ashton and G. P. Berlyn, “A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments,” The American Journal of Botany, vol. 81, no. 5, pp. 589–597, 1994.
[51]  H. K. Mokoboki, L. R. Ndlovu, and M. M. Malatje, “Intake and relative palatability indices of Acacia species fed to sheep and goats,” Agroforestry Systems, vol. 81, no. 1, pp. 31–35, 2011.
[52]  E. N. Chidumayo, “Demographic implications of life history stage characteristics in two African acacias at a Makeni savanna plot in Zambia,” Journal of Plant Ecology, vol. 1, pp. 217–225, 2008.
[53]  C. Dupraz and S. M. Newman, “Temperate agroforestry systems,” in Temperate Agroforestry: The European Way, A. M. Gordon and S. M. Newman, Eds., pp. 181–236, CABI, Wallingford, UK, 1997.
[54]  M. P. González-Hernández and M. J. R. Lorenzo, “Pasture production and tree growth in agroforestry systems of northwest Spain,” in Ecological Basis of Agroforestry, D. R. Batish, R. K. Kohli, S. Jose, and H. P. Singh, Eds., pp. 361–375, CRC Press, Boca Raton, Fla, USA, 2008.
[55]  J. Sircely and S. Naeem, “Relationships of overstory trees and shrubs with forage species portray ecosystem service interactions in smallholder fallows,” Agroforestry Systems, vol. 87, pp. 451–464, 2013.
[56]  S. Díaz, D. A. Wardle, and A. Hector, “Incorporating biodiversity in climate change mitigation initiatives,” in Biodiversity, Ecosystem Functioning, and Human Wellbeing—An Ecological and Economic Perspective, S. Naeem, D. E. Bunker, A. Hector, M. Loreau, and C. Perrings, Eds., pp. 149–166, Oxford University Press, Oxford, UK, 2009.
[57]  I. J. Wright, P. B. Reich, M. Westoby et al., “The worldwide leaf economics spectrum,” Nature, vol. 428, no. 6985, pp. 821–827, 2004.
[58]  R. Aerts and F. S. Chapin III, “The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns,” Advances in Ecological Research, vol. 30, pp. 1–67, 1999.
[59]  H. G. Jung and M. S. Allen, “Characteristics of plant cell walls affecting intake and digestibility of forages by ruminants,” Journal of Animal Science, vol. 73, no. 9, pp. 2774–2790, 1995.
[60]  K. J. Moore and H. G. Jung, “Lignin and fiber digestion,” Journal of Range Management, vol. 54, no. 4, pp. 420–430, 2001.
[61]  R. W. Brooker, F. T. Maestre, R. M. Callaway et al., “Facilitation in plant communities: the past, the present, and the future,” Journal of Ecology, vol. 96, no. 1, pp. 18–34, 2008.
[62]  R. M. Callaway, R. W. Brooker, P. Choler et al., “Positive interactions among alpine plants increase with stress,” Nature, vol. 417, no. 6891, pp. 844–848, 2002.
[63]  P. Graff, M. R. Aguiar, and E. J. Chaneton, “Shifts in positive and negative plant interactions along a grazing intensity gradient,” Ecology, vol. 88, no. 1, pp. 188–199, 2007.
[64]  Convention on Biodiversity, “Forest resilience, biodiversity and climate change,” CBD Technical Series No 43, 2009.
[65]  S. J. DeWalt, S. K. Maliakal, and J. S. Denslow, “Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife,” Forest Ecology and Management, vol. 182, no. 1–3, pp. 139–151, 2003.
[66]  L. O. Z. Onyewotu, M. A. Ogigirigi, and C. J. Stigter, “A study of competitive effects between a Eucalyptus camaldulensis shelterbelt and an adjacent millet (Pennisetum typhoides) crop,” Agriculture, Ecosystems and Environment, vol. 51, no. 3, pp. 281–286, 1994.
[67]  M. G. R. Cannell, M. van Noordwijk, and C. K. Ong, “The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire,” Agroforestry Systems, vol. 34, no. 1, pp. 27–31, 1996.
[68]  E. C. Rowe, M. van Noordwijk, D. Suprayogo, and G. Cadisch, “Nitrogen use efficiency of monoculture and hedgerow intercropping in the humid tropics,” Plant and Soil, vol. 268, no. 1, pp. 61–74, 2005.
[69]  O. A. Leistner, “The subcanopy flora in the dynamics of the Kalahari Thornveld,” in The Biodiversity of African Plants Proceedings, 14th AETFAT Congress, 22–27 August 1994, Wageningen, The Netherlands, L. J. G. van der Maesen, X. M. van der Burgt, and J. M. van Medenbach de Rooy, Eds., pp. 163–179, Kluwer Academic, Boston, Mass, USA, 1996.
[70]  E. M. Lind and M. E. S. Morisson, East African Vegetation, Longman, London, UK, 1974.
[71]  R. M. Jones, “Preliminary studies of the germination of seed of Acacia cyclops and Acacia cynbophylla,” South African Journal of Science, vol. 59, pp. 296–298, 1963.
[72]  E. N. Sabiiti and R. W. Wein, “Fire and Acacia seeds: a hypothesis of colonization success,” Journal of Ecology, vol. 75, no. 4, pp. 937–946, 1987.
[73]  P. J. Pieterse and A. L. P. Cairns, “The effect of fire on an Acacia longifolia seed bank in the south-western Cape,” South African Journal of Botany, vol. 52, no. 3, pp. 233–236, 1986.
[74]  T. D. Auld and M. A. O'Connell, “Changes in predispersal seed predation levels after fire for two Australian legumes, Acacia elongata and Sphaerolobium vimineum,” Oikos, vol. 54, no. 1, pp. 55–59, 1989.
[75]  H. A. Omer, “The effect of burning on the viability of five Acacia species,” Sudan Silva, vol. 20, no. 3, pp. 20–22, 1975.
[76]  J. M. Lock, “Vegetation studies in Queen Elizabeth National Park, Uganda,” Agriculture Consulting Technical Assistance to Uganda Institute of Ecology Project No. 4100.337.42.41, 1988.
[77]  R. A. Bradstock and T. D. Auld, “Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia,” Journal of Applied Ecology, vol. 32, no. 1, pp. 76–84, 1995.
[78]  D. Teketay, “Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia,” Forest Ecology and Management, vol. 80, no. 1–3, pp. 209–223, 1996.
[79]  B. A. Mbalo and E. T. F. Witkowski, “Tolerance to soil temperatures experienced during and after the passage of fire in seeds of Acacia karroo, A. tortilis and Chromolaena odorata: a laboratory study,” South African Journal of Botany, vol. 63, no. 6, pp. 421–425, 1997.
[80]  P. A. Thompson, “A comparison of the germinative character of species of Caryophyllaceae collected in Central Germany,” Journal Ecology, vol. 58, pp. 699–711, 1971.
[81]  C. Chikono and J. S. Choinski Jr., “Thermotolerance characteristics of seeds from geographically isolated populations of the African tree Combretum apiculatum Sonder,” African Journal of Ecology, vol. 30, no. 1, pp. 65–73, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133