Over 3 billion hectares of lands worldwide are grazed by livestock, with a majority suffering degradation in ecological condition. Losses in plant productivity, biodiversity of plant and animal communities, and carbon storage are occurring as a result of livestock grazing. Holistic management (HM) has been proposed as a means of restoring degraded deserts and grasslands and reversing climate change. The fundamental approach of this system is based on frequently rotating livestock herds to mimic native ungulates reacting to predators in order to break up biological soil crusts and trample plants and soils to promote restoration. This review could find no peer-reviewed studies that show that this management approach is superior to conventional grazing systems in outcomes. Any claims of success due to HM are likely due to the management aspects of goal setting, monitoring, and adapting to meet goals, not the ecological principles embodied in HM. Ecologically, the application of HM principles of trampling and intensive foraging are as detrimental to plants, soils, water storage, and plant productivity as are conventional grazing systems. Contrary to claims made that HM will reverse climate change, the scientific evidence is that global greenhouse gas emissions are vastly larger than the capacity of worldwide grasslands and deserts to store the carbon emitted each year. 1. Introduction Lands grazed by livestock include 3.4 billion ha worldwide with 73% estimated to be suffering soil degradation [1]. The solution presented during Allan Savory’s February 2013 TED Talk was to use holistic management (HM) to reverse desertification and climate change [2]. He reported that we are creating “too much bare ground” (1:30 in video) in the arid areas of the world and, as a consequence, rainfall runs off or evaporates, soils are damaged, and carbon is released back to the atmosphere. Grasslands, even in high rainfall areas, may contain large areas of bare ground with a crust of algae, leading to increased runoff and evaporation. Desertification is caused by livestock, “overgrazing the plants, leaving the soil bare, and giving off methane” (4:20 in video). HM is also called holistic resource management, time controlled grazing, Savory grazing method, or short-duration grazing. It is designed to mimic the behavior of grazing animals that are regulated by their predators to gather in large groups. As Savory puts it [2], “What we had failed to understand was that these seasonal humidity environments of the world, the soil and the vegetation developed with very large numbers
References
[1]
E. Gabathuler, H. Liniger, C. Hauert, and M. Giger, Benefits of Sustainable Land Management, World Overview of Conservation Approaches and Technologies, Center for Development and Environment, University of Bern, Bern, Switzerland, 2009.
[2]
A. Savory, “How to fight desertification and reverse climate change,” 2013, http://www.ted.com/talks/allan_savory_how_to_green_the_world_s_deserts_and_reverse_climate_change.html.
[3]
A. Savory and S. D. Parsons, “The Savory grazing method,” Rangelands, vol. 2, pp. 234–237, 1980.
[4]
A. Savory, “The Savory grazing method or holistic resource management,” Rangelands, vol. 5, pp. 155–159, 1983.
[5]
A. Savory, Holistic Resource Management, Island Press, Washington, DC, USA, 1988.
[6]
A. Savory and J. Butterfield, Holistic Management: A New Framework for Decision Making, Island Press, Washington, DC, USA, 1999.
[7]
C. J. Hadley, “The wild life of Allan Savory,” Rangelands, vol. 22, pp. 6–10, 2000.
[8]
R. S. Thompson and K. H. Anderson, “Biomes of western North America at 18,000, 6000 and 0 14C yr BP reconstructed from pollen and packrat midden data,” Journal of Biogeography, vol. 27, no. 3, pp. 555–584, 2000.
[9]
R. N. Mack and J. N. Thompson, “Evolution in steppe with few large hooved mammals,” American Naturalist, vol. 119, no. 6, pp. 757–773, 1982.
[10]
A. R. E. Sinclair and M. Norton-Griffiths, Serengeti: Dynamics of an Ecosystem, University of Chicago Press, 1979.
[11]
A. R. E. Sinclair, S. A. R. Mduma, J. G. C. Hopcraft, J. M. Fryxell, R. Hilborn, and S. Thirgood, “Long-term ecosystem dynamics in the serengeti: lessons for conservation,” Conservation Biology, vol. 21, no. 3, pp. 580–590, 2007.
[12]
R. Daubenmire, “The western limits of the range of the American bison,” Ecology, vol. 66, no. 2, pp. 622–624, 1985.
[13]
G. Wuerthner, “Are cows just domestic bison? Behavioral and habitat use differences between cattle and bison,” in Proceedings of an International Symposium on Bison Ecology and Management in North America, L. Irby, L. Knight, and J. Knight, Eds., pp. 374–383, Bozeman, Mont, USA, June 1998.
[14]
F. G. Roe, The North American Buffalo: A Critical Study of the Species in Its Wild State, University of Toronto Press, Toronto, Calif, USA, 1951.
[15]
J. F. Howden, “Some possible effects of the Pleistocene on the distributions of North American Scarabaeidae (Coleoptera),” Canadian Entomologist, vol. 98, no. 11, pp. 1177–1190, 1966.
[16]
J. W. Burkhardt, Herbivory in the Intermountain West, vol. 58 of Station Bulletin, University of Idaho Forest, Wildlife and Range Experiment Station, Moscow, Idaho, USA, 1996.
[17]
J. M. J. de Wet, “Grasses and the culture history of man,” Annals Missouri Botanical Garden, vol. 68, no. 1, pp. 87–104, 1981.
[18]
H. Wanner, J. Beer, J. Bütikofer et al., “Mid- to Late Holocene climate change: an overview,” Quaternary Science Reviews, vol. 27, no. 19-20, pp. 1791–1828, 2008.
[19]
D. K. Grayson, “Mammalian responses to middle Holocene climatic change in the Great Basin of the western United States,” Journal of Biogeography, vol. 27, no. 1, pp. 181–192, 2000.
[20]
R. L. Beschta, D. L. Donahue, A. DellaSala et al., “Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild, and feral ungulates,” Environmental Management, vol. 51, no. 2, pp. 474–491, 2012.
[21]
W. J. Bond, “What limits trees in C4 grasslands and savannas?” Annual Review of Ecology, Evolution, and Systematics, vol. 39, pp. 641–659, 2008.
[22]
S. Archer, D. S. Schimel, and E. A. Holland, “Mechanisms of shrubland expansion: land use, climate or CO2?” Climatic Change, vol. 29, no. 1, pp. 91–99, 1995.
[23]
M. D. Reisner, J. B. Grace, D. A. Pyke, and P. S. Doescher, “Conditions favoring Bromus tectorum dominance of endangered sagebrush steppe ecosystems,” Journal of Applied Ecology, vol. 50, no. 4, pp. 1039–1049, 2013.
[24]
O. W. van Auken, “Shrub invasions of North American semiarid grasslands,” Annual Review of Ecology and Systematics, vol. 31, pp. 197–215, 2000.
[25]
G. W. Gee, P. A. Beedlow, and R. L. Skaggs, “Water balance,” in Shrub-Steppe Balance and Change in a Semi-Arid Terrestrial Ecosystem, W. H. Rickard, L. E. Rogers, B. E. Vaughan, and S. F. Liebetrau, Eds., pp. 61–81, Elsevier, New York, NY, USA, 1988.
[26]
W. H. Wischmeier and D. D. Smith, Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, vol. 537 of Agriculture Handbook, US Department of Agriculture, Washington, DC, USA, 1978.
[27]
W. T. Hinds and W. H. Rickard, “Soil temperatures near a desert steppe shrub,” Northwest Science, vol. 42, pp. 5–8, 1968.
[28]
R. H. Sauer, “Effect of removal of standing dead material on growth of Agropyron spicatum,” Journal of Range Management, vol. 31, no. 2, pp. 121–122, 1978.
[29]
D. Ganskopp, R. Angell, and J. Rose, “Response of cattle to cured reproductive stems in a caespitose grass,” Journal of Range Management, vol. 45, no. 4, pp. 401–404, 1992.
[30]
L. Ellison, “Influence of grazing on plant succession of Rangelands,” The Botanical Review, vol. 26, no. 1, pp. 1–78, 1960.
[31]
A. J. Belsky, “Does herbivory benefit plants? A review of the evidence,” American Naturalist, vol. 127, no. 6, pp. 870–892, 1986.
[32]
E. L. Painter and A. J. Belsky, “Application of herbivore optimization theory to rangelands of the western United States,” Ecological Appplications, vol. 3, no. 1, pp. 2–9, 1993.
[33]
J. L. Holechek, H. Gomez, F. Molinar, and D. Galt, “Grazing studies: what we've learned,” Rangelands, vol. 21, no. 2, pp. 12–16, 1999.
[34]
W. F. Mueggler, “Rate and pattern of vigor recovery in Idaho fescue and bluebunch wheatgrass,” Journal of Range Management, vol. 28, no. 3, pp. 198–204, 1975.
[35]
L. D. Anderson, Bluebunch Wheatgrass Defoliation, Effects and Recovery—A Review, vol. 91-2 of BLM Technical Bulletin, Bureau of Land Management, Idaho State Office, Boise, Idaho, USA, 1991.
[36]
R. S. Driscoll, “A relict area in the central Oregon juniper zone,” Ecology, vol. 45, no. 2, pp. 345–353, 1964.
[37]
R. R. Kindschy, “Pristine vegetation of the Jordan Crater kipukas: 1978–1991,” in Proceedings-Ecology and Management of Annual Rangelands, S. B. Monsen and S. G. Kitchen, Eds., INT-GTR-313, pp. 85–88, US Department of Agriculture, Forest Service, Boise, Idaho, USA, May 1992.
[38]
N. Ambos, G. Robertson, and J. Douglas, “Dutchwoman butte: a relict grassland in central Arizona,” Rangelands, vol. 22, no. 2, pp. 3–8, 2000.
[39]
D. F. Costello and G. T. Turner, “Vegetation changes following exclusion of livestock from grazed ranges,” Journal of Forestry, vol. 39, pp. 310–315, 1941.
[40]
A. B. Evanko and R. A. Peterson, “Comparisons of protected and grazed mountain rangelands in southwestern Montana,” Ecology, vol. 36, no. 1, pp. 71–82, 1955.
[41]
J. H. Robertson, “Changes on a sagebrush-grass range in Nevada ungrazed for 30 years,” Journal of Range Management, vol. 24, no. 5, pp. 397–400, 1971.
[42]
A. McLean and E. W. Tisdale, “Recovery rate of depleted range sites under protection from grazing,” Journal of Range Management, vol. 25, no. 3, pp. 178–184, 1972.
[43]
J. E. Anderson and R. S. Inouye, “Landscape-scale changes in plant species abundance and biodiversity of a sagebrush steppe over 45 years,” Ecological Monographs, vol. 71, no. 4, pp. 531–556, 2001.
[44]
J. Blydenstein, C. R. Hungerford, G. I. Day, and R. R. Humphrey, “Effect of domestic livestock exclusion on vegetation in the Sonoran Desert,” Ecology, vol. 38, no. 3, pp. 522–526, 1957.
[45]
G. Wuerthner and M. Matteson, “A guide to livestock-free landscapes,” in Welfare Ranching: The Subsidized Destruction of the American West, G. Wuerthner and M. Mattson, Eds., pp. 327–329, Island Press, Washington, DC, USA, 2004.
[46]
W. W. Brady, M. R. Stromberg, E. F. Aldon, C. D. Bonham, and S. H. Henry, “Response of a semidesert grassland to 16 years of rest from grazing,” Journal of Range Management, vol. 42, no. 4, pp. 284–288, 1989.
[47]
C. E. Bock, J. H. Bock, W. R. Penney, and V. M. Hawthorne, “Responses of birds, rodents, and vegetation to livestock exclosure in a semidesert grassland site,” Journal of Range Management, vol. 37, no. 3, pp. 239–242, 1984.
[48]
W. J. Ripple and B. van Valkenburgh, “Linking top-down forces to the pleistocene megafaunal extinctions,” BioScience, vol. 60, no. 7, pp. 516–526, 2010.
[49]
J. W. Laundré, L. Hernández, and W. J. Ripple, “The landscape of fear: ecological implications of being afraid,” The Open Ecology Journal, vol. 3, no. 2, pp. 1–7, 2010.
[50]
C. Eisenberg, S. T. Seager, and D. E. Hibbs, “Wolf, elk, and aspen food web relationships: context and complexity,” Forest Ecology and Management, vol. 299, pp. 70–80, 2013.
[51]
S. Creel and D. Christianson, “Wolf presence and increased willow consumption by Yellowstone elk: implications for trophic cascades,” Ecology, vol. 90, no. 9, pp. 2454–2466, 2009.
[52]
J. Winnie Jr. and S. Creel, “Sex-specific behavioural responses of elk to spatial and temporal variation in the threat of wolf predation,” Animal Behaviour, vol. 73, no. 1, pp. 215–225, 2007.
[53]
J. Belnap, D. Eldridge, J. H. Kaltenecker, S. Leonard, R. Rosentreter, and J. Williams, Biological Soil Crusts Ecology and Management, TR-1730-2, US Department of Interior, Bureau of Land Management, Denver, Colo, USA, 2001.
[54]
N. E. West, “Western intermountain sagebrush steppe,” in Temperate Deserts and Semi-Deserts, N. E. West, Ed., pp. 351–373, Elsevier Scientific Publishing Company, Amsterdam, The Netherlands, 1983.
[55]
J. Belnap and O. L. Lange, Eds., Biological Soil Crusts: Structure, Function, and Management, Springer, New York, NY, USA, 2003.
[56]
O. L. Lange, E. D. Schulze, L. Kappen, U. Buschbom, and M. Evenari, “Adaptations of desert lichens to drought and extreme temperatures,” in Environmental Physiology of Desert Ecosystems, N. F. Hadley, Ed., pp. 27–30, Dowden, Hutchinson and Ross, Stroudsberg, Pa, USA, 1975.
[57]
J. A. R. Ladyman and E. Muldavin, Terrestrial Cryptogams of Pinyon-Juniper Woodlands in the Southwestern US: A Review, RM-GTR-280, US Department of Agriculture, Forest Service, Fort Collins, Colo, USA, 1996.
[58]
A. J. Belsky and J. L. Gelbard, Livestock Grazing and Weed Invasions in the Arid West, Oregon Natural Desert Association, Bend, Ore, USA, 2000.
[59]
G. Wuerthner, “The soil’s living surface: biological crusts,” in Welfare Ranching: The Subsidized Destruction of the American West, G. Wuerthner and M. Mattson, Eds., pp. 199–204, Island Press, Washington, DC, USA, 2004.
[60]
L. Deines, R. Rosentreter, D. J. Eldridge, and M. D. Serpe, “Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts,” Plant and Soil, vol. 295, no. 1-2, pp. 23–35, 2007.
[61]
J. Belnap, “Potential role of cryptobiotic soil crust in semi-arid rangelands,” in Proceedings-Ecology and Management of Annual Rangelands, S. B. Monsen and S. G. Kitchen, Eds., INT-GTR-313, pp. 179–185, US Department of Agriculture, Forest Service, Boise, Idaho, USA, May 1992.
[62]
E. F. Kleiner and K. T. Harper, “Environment and community organization in grasslands of Canyonlands National Park,” Ecology, vol. 53, no. 2, pp. 299–309, 1972.
[63]
M. L. Floyd, T. L. Fleischner, D. Hanna, and P. Whitefield, “Effects of historic livestock grazing on vegetation at chaco culture National Historic Park, New Mexico,” Conservation Biology, vol. 17, no. 6, pp. 1703–1711, 2003.
[64]
J. M. Ponzetti and B. P. McCune, “Biotic soil crusts of Oregon's shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity,” Bryologist, vol. 104, no. 2, pp. 212–225, 2001.
[65]
R. N. Mack, “Invasion of Bromus tectorum L. into western North America: an ecological chronicle,” Agro-Ecosystems, vol. 7, no. 2, pp. 145–165, 1981.
[66]
US Bureau of Land Management, “Partners against weeds: an action plan for the Bureau of land management,” Tech. Rep. BLM/MT/ST-96/003+1020, US Bureau of Land Management, Billings, Mont, USA, 1996.
[67]
L. Ellison, “Influence of grazing on plant succession of Rangelands,” The Botanical Review, vol. 26, no. 1, pp. 1–78, 1960.
[68]
G. C. Lusby, “Effects of grazing on runoff and sediment yield from desert rangeland at Badger Wash in western Colorado, 1953–1973,” US Geological Survey Water Supply Paper 1532-1, 1979.
[69]
S. D. Warren, M. B. Nevill, W. H. Blackburn, and N. E. Garza, “Soil response to trampling under intensive rotation grazing,” Soil Science Society of America Journal, vol. 50, no. 5, pp. 1336–1341, 1986.
[70]
S. W. Trimble and A. C. Mendel, “The cow as a geomorphic agent—a critical review,” Geomorphology, vol. 13, no. 1–4, pp. 233–253, 1995.
[71]
G. P. Asner, A. J. Elmore, L. P. Olander, R. E. Martin, and T. Harris, “Grazing systems, ecosystem responses, and global change,” Annual Review of Environment and Resources, vol. 29, pp. 261–299, 2004.
[72]
W. P. Cottam and F. R. Evans, “A comparative study of the vegetation of grazed and ungrazed canyons of the Wasatch Range, Utah,” Ecology, vol. 26, no. 2, pp. 171–181, 1945.
[73]
J. L. Gardner, “The effects of thirty years of protection from grazing in desert grassland,” Ecology, vol. 31, no. 1, pp. 44–50, 1950.
[74]
J. B. Kauffman, W. C. Krueger, and M. Vavra, “Effects of late season cattle grazing on riparian plant communities,” Journal of Range Management, vol. 36, no. 6, pp. 685–691, 1983.
[75]
G. F. Gifford and R. H. Hawkins, “Hydrologic impact of grazing on infiltration: a critical review,” Water Resources Research, vol. 14, no. 2, pp. 305–313, 1978.
[76]
T. L. Fleischner, “Ecological costs of livestock grazing in western North America,” Conservation Biology, vol. 8, no. 3, pp. 629–644, 1994.
[77]
A. Jones, “Effects of cattle grazing on North American arid ecosystems: a quantitative review,” Western North American Naturalist, vol. 60, no. 2, pp. 155–164, 2000.
[78]
J. B. Kauffman, A. S. Thorpe, and E. N. J. Brookshire, “Livestock exclusion and belowground ecosystem responses in riparian meadows of eastern Oregon,” Ecological Applications, vol. 14, no. 6, pp. 1671–1679, 2004.
[79]
R. E. Ingham, J. A. Trofymow, E. R. Ingham, and D. C. Coleman, “Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth,” Ecological Monographs, vol. 55, no. 1, pp. 119–140, 1985.
[80]
N. C. Brady and R. R. Weil, The Nature and Properties of Soils, Prentice-Hall, Upper Saddle River, NJ, USA, 12th edition, 1999.
[81]
E. R. Ingham, Soil Biology Primer, US Department of Agriculture, Natural Resources Conservation Service, Soil Quality Institute, 1999.
[82]
J. Skovlin, “Southern Africa’s experience with intensive short duration grazing,” Rangelands, vol. 9, pp. 162–167, 1987.
[83]
J. L. Holechek, H. Gomes, F. Molinar, D. Galt, and R. Valdez, “Short-duration grazing: the facts in 1999,” Rangelands, vol. 22, no. 1, pp. 18–22, 2000.
[84]
J. Carter, B. Chard, and J. Chard, “Moderating livestock grazing effects on plant productivity, carbon and nitrogen storage,” in Proceedings of the 17th Wildland Shrub Symposium, T. A. Monaco, et al., Ed., pp. 191–205, Logan, Utah, USA, May 2010.
[85]
H. Steinfeld, P. Gerber, T. Wassentaar, V. Castel, M. Rosales, and C. de Haan, Livestock’s Long Shadow, Food and Agriculture Organization of the United Nations, Rome, Italy, 2006.
[86]
R. Goodland and J. Anhang, “Livestock and climate change,” World Watch, vol. 22, no. 6, pp. 10–19, 2009.
L. Reynolds, “Agriculture and livestock remain major sources of greenhouse gas emissions,” 2013, http://www.worldwatch.org/agriculture-and-livestock-remain-major-sources-greenhouse-gas-emissions-1.
[89]
K. A. Johnson and D. E. Johnson, “Methane emissions from cattle,” Journal of Animal Science, vol. 73, no. 8, pp. 2483–2492, 1995.
[90]
L. Abend, “How cows (grass-fed only) could save the planet,” Time Magazine, 2010.
[91]
N. Pelletier, R. Pirog, and R. Rasmussen, “Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States,” Agricultural Systems, vol. 103, no. 6, pp. 380–389, 2010.
[92]
R. R. Allmaras, H. H. Schomberg, J. Douglas C.L., and T. H. Dao, “Soil organic carbon sequestration potential of adopting conservation tillage in U.S. croplands,” Journal of Soil and Water Conservation, vol. 55, no. 3, pp. 365–373, 2000.
[93]
J. Grace, J. S. José, P. Meir, H. S. Miranda, and R. A. Montes, “Productivity and carbon fluxes of tropical savannas,” Journal of Biogeography, vol. 33, no. 3, pp. 387–400, 2006.
[94]
D. K. Benbi and J. S. Brar, “A 25-year record of carbon sequestration and soil properties in intensive agriculture,” Agronomy for Sustainable Development, vol. 29, no. 2, pp. 257–265, 2009.
[95]
R. F. Follett, J. M. Kimble, and R. Lal, Eds., The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect, Lewis Publishers, Boca Raton, Fla, USA, 2001.
[96]
C. Neely, S. Bunning, and A. Wilkes, “Review of evidence on drylands pastoral systems and climate change: implications and opportunities for mitigation and adaptation,” Land and Water Discussion Paper 8, Food and Agriculture Organization of the United Nations, Rome, Italy, 2009.
[97]
S. Daryanto, D. J. Eldridge, and H. L. Throop, “Managing semi-arid woodlands for carbon storage: grazing and shrub effects on above and belowground carbon,” Agriculture, Ecosystems and Environment, vol. 169, pp. 1–11, 2013.
[98]
D. P. Fernandez, J. C. Neff, and R. L. Reynolds, “Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA,” Journal of Arid Environments, vol. 72, no. 5, pp. 777–791, 2008.
[99]
D. D. Briske, N. F. Sayre, L. Huntsinger, M. Fernandez-Gimenez, B. Budd, and J. D. Derner, “Origin, persistence, and resolution of the rotational grazing debate: integrating human dimensions into rangeland research,” Rangeland Ecology and Management, vol. 64, no. 4, pp. 325–334, 2011.
[100]
D. M. Gammon, “An appraisal of short duration grazing as a method of veld management,” Zimbabwe Agriculture Journal, vol. 81, pp. 59–64, 1984.
[101]
PJ. O’Reagain and J. R. Turner, “An evaluation of the empirical basis for grazing management recommendations for Rangeland in southern Africa,” Journal of the Grassland Society of Southern Africa, vol. 9, no. 1, pp. 38–49, 1992.
[102]
D. D. Briske, B. T. Bestelmeyer, J. R. Brown, S. D. Fuhlendorf, and H. W. Polley, “The Savory method cannot green deserts or reverse climate change,” Rangelands, vol. 35, no. 5, pp. 72–74, 2013.
[103]
D. D. Briske, J. D. Derner, J. R. Brown et al., “Rotational grazing on Rangelands: reconciliation of perception and experimental evidence,” Rangeland Ecology and Management, vol. 61, no. 1, pp. 3–17, 2008.
[104]
J. T. Manley, G. E. Schuman, J. D. Reeder, and R. H. Hart, “Rangeland soil carbon and nitrogen responses to grazing,” Journal of Soil and Water Conservation, vol. 50, no. 3, pp. 294–298, 1995.
[105]
J. M. Earl and C. E. Jones, “The need for a new approach to grazing management—is cell grazing the answer?” The Rangeland Journal, vol. 18, no. 2, pp. 327–350, 1996.
[106]
G. Sanjari, H. Ghadiri, C. A. A. Ciesiolka, and B. Yu, “Comparing the effects of continuous and time-controlled grazing systems on soil characteristics in southeast Queensland,” Australian Journal of Soil Research, vol. 46, no. 4, pp. 348–358, 2008.
[107]
W. R. Teague, S. L. Dowhower, S. A. Baker, N. Haile, P. B. DeLaune, and D. M. Conover, “Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie,” Agriculture, Ecosystems and Environment, vol. 141, no. 3-4, pp. 310–322, 2011.
[108]
K. T. Weber and B. S. Gokhale, “Effect of grazing on soil-water content in semiarid rangelands of southeast Idaho,” Journal of Arid Environments, vol. 75, no. 5, pp. 464–470, 2011.
[109]
H. W. van Poolen and J. R. Lacey, “Herbage response to grazing systems and stocking intensities,” Journal of Range Management, vol. 32, no. 4, pp. 250–253, 1979.
[110]
W. P. Clary and B. F. Webster, “Managing grazing of riparian areas in the Intermountain Region,” Tech. Rep. GTR-INT-263, US Department of Agriculture, Forest Service, Ogden, Utah, USA, 1989.
[111]
H. K. Orr, “Recovery from soil compaction on bluegrass range in the Black Hills,” Transactions of the American Society of Agricultural and Biological Engineers, vol. 18, no. 6, pp. 1076–1081, 1975.
[112]
A. J. Belsky, A. Matzke, and S. Uselman, “Survey of livestock influences on stream and riparian ecosystems in the western United States,” Journal of Soil and Water Conservation, vol. 54, no. 1, pp. 419–431, 1999.
[113]
T. Tucker Schulz and W. C. Leininger, “Differences in riparian vegetation structure between grazed areas and exclosures,” Journal of Range Management, vol. 43, no. 4, pp. 295–299, 1990.
[114]
E. J. Dyksterhuis, “Condition and management of rangeland based on quantitative ecology,” Journal of Range Management, vol. 2, no. 3, pp. 104–115, 1949.
[115]
E. F. Habich, “Ecological site inventory, technical reference 1734-7,” Tech. Rep. BLM/ST/ST-01/003+1734, Bureau of Land Management, Denver, Colo, USA, 2001.
[116]
D. S. Dobkin, A. C. Rich, and W. H. Pyle, “Habitat and avifaunal recovery from livestock grazing in riparian meadow system of the northwestern Great Basin,” Conservation Biology, vol. 12, no. 1, pp. 209–221, 1998.
[117]
S. L. Earnst, J. A. Ballard, and D. S. Dobkin, “Riparian songbird abundance a decade after cattle removal on Hart Mountain and Sheldon National Wildlife Refuges,” in Proceedings of the 3rd International Partners in Flight Conference, C. J. Ralph and T. Rich, Eds., General Technical Report PSW-GTR-191, pp. 550–558, US Department of Agriculture, Forest Service, Albany, Calif, USA, 2005.
[118]
C. E. Bock and J. H. Bock, “Cover of perennial grasses in southeastern Arizona in relation to livestock grazing,” Conservation Biology, vol. 7, no. 2, pp. 371–377, 1993.
[119]
D. H. Stinner, B. R. Stinner, and E. Martsolf, “Biodiversity as an organizing principle in agroecosystem management: case studies of holistic resource management practitioners in the USA,” Agriculture, Ecosystems and Environment, vol. 63, no. 2-3, pp. 199–213, 1997.