全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rapid PCR Detection of Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum

DOI: 10.1155/2013/168742

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. We compared laboratory developed real-time PCR assays for detection of Mycoplasma hominis and for detection and differentiation of Ureaplasma urealyticum and parvum to culture using genitourinary specimens submitted for M. hominis and Ureaplasma culture. Methods. 283 genitourinary specimens received in the clinical bacteriology laboratory for M. hominis and Ureaplasma species culture were evaluated. Nucleic acids were extracted using the Total Nucleic Acid Kit on the MagNA Pure 2.0. 5?μL of the extracts were combined with 15?μL of each of the two master mixes. Assays were performed on the LightCycler 480 II system. Culture was performed using routine methods. Results.??M. hominis PCR detected 38/42 M. hominis culture-positive specimens, as well as 2 that were culture negative (sensitivity, 90.5%; specificity, 99.2%). Ureaplasma PCR detected 139/144 Ureaplasma culture-positive specimens, as well as 9 that were culture negative (sensitivity, 96.5%; specificity, 93.6%). Of the specimens that tested positive for Ureaplasma species, U. urealyticum alone was detected in 33, U. parvum alone in 109, and both in 6. Conclusion. The described PCR assays are rapid alternatives to culture for detection of M. hominis and Ureaplasma species, and, unlike culture, the Ureaplasma assay easily distinguishes U. urealyticum from parvum. 1. Introduction Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum are small, fastidious bacteria belonging to the Mollicutes class. They lack a cell wall (preventing staining with Gram stain) and are not sensitively detected on routine bacterial cultures. Optimal recovery requires specialized media and growth conditions. There are several human pathogens in the genera Mycoplasma and Ureaplasma which are responsible for a variety of clinical manifestations involving multiple body systems [1]. M. hominis causes septic arthritis and postpartum fever and has been associated with pelvic inflammatory disease and bacterial vaginosis [2]. Ureaplasma species can cause acute urethritis and have been associated with bacterial vaginosis, preterm birth, and neonatal respiratory disease [1, 3]. Although M. hominis and Ureaplasma species can be cultured, this requires technical skill for interpretation of microscopic colonies and takes two to five days. U. urealyticum was the only Ureaplasma species until 2002, when U. parvum was described [4]. The two are not distinguished based on culture characteristics alone. Real-time PCR detection of these microorganisms from clinical samples circumvents technical issues related to culture

References

[1]  D. Taylor-Robinson and J. S. Jensen, “Mycoplasma genitalium: from chrysalis to multicolored butterfly,” Clinical Microbiology Reviews, vol. 24, no. 3, pp. 498–514, 2011.
[2]  M. A. Patel and P. Nyirjesy, “Role of Mycoplasma and Ureaplasma species in female lower genital tract infections,” Current Infectious Disease Reports, vol. 12, no. 6, pp. 417–422, 2010.
[3]  R. Aaltonen, J. Jalava, E. Laurikainen, U. K?rkk?inen, and A. Alanen, “Cervical Ureaplasma urealyticum colonization: comparison of PCR and culture for its detection and association with preterm birth,” Scandinavian Journal of Infectious Diseases, vol. 34, no. 1, pp. 35–40, 2002.
[4]  J. A. Robertson, G. W. Stemke, J. W. Davis et al., “Proposal of Ureaplas maparvum sp. nov. and emended description of Ureaplasma urealyticum (Shepard et al. 1974) Robertson et al. 2001,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 2, pp. 587–597, 2002.
[5]  A. Baczynska, H. F. Svenstrup, J. Fedder, S. Birkelund, and G. Christiansen, “Development of real-time PCR for detection of Mycoplasma hominis,” BMC Microbiology, vol. 4, article 35, 2004.
[6]  C. Férandon, O. Peuchant, C. Janis et al., “Development of a real-time PCR targeting the yidC gene for the detection of Mycoplasma hominis and comparison with quantitative culture,” Clinical Microbiology and Infection, vol. 17, no. 2, pp. 155–159, 2011.
[7]  A. Pascual, K. Jaton, B. Ninet, J. Bille, and G. Greub, “New diagnostic real-time PCR for specific detection of Mycoplasma hominis DNA,” International Journal of Microbiology, vol. 2010, Article ID 317512, 4 pages, 2010.
[8]  L. Xiao, J. I. Glass, V. Paralanov et al., “Detection and characterization of human Ureaplasma species and serovars by real-time PCR,” Journal of Clinical Microbiology, vol. 48, no. 8, pp. 2715–2723, 2010.
[9]  J. Yi, H. Y. Bo, and E. C. Kim, “Detection and biovar discrimination of Ureaplasma urealyticum by real-time PCR,” Molecular and Cellular Probes, vol. 19, no. 4, pp. 255–260, 2005.
[10]  J. Tang, L. Zhou, X. Liu, C. Zhang, Y. Zhao, and Y. Wang, “Novel multiplex real-time PCR system using the SNP technology for the simultaneous diagnosis of Chlamydia trachomatis, Ureaplasma parvum and Ureaplasma urealyticum and genetic typing of serovars of C. trachomatis and U. parvum in NGU,” Molecular and Cellular Probes, vol. 25, no. 1, pp. 55–59, 2011.
[11]  E. Vancutsem, O. Soetens, M. Breugelmans, W. Foulon, and A. Naessens, “Modified real-time PCR for detecting, differentiating, and quantifying Ureaplasma urealyticum and Ureaplasma parvum,” Journal of Molecular Diagnostics, vol. 13, no. 2, pp. 206–212, 2011.
[12]  K. A. Stellrecht, A. M. Woron, N. G. Mishrik, and R. A. Venezia, “Comparison of multiplex PCR assay with culture for detection of genital mycoplasmas,” Journal of Clinical Microbiology, vol. 42, no. 4, pp. 1528–1533, 2004.
[13]  F. Kong, Z. Ma, G. James, S. Gordon, and G. L. Gilbert, “Species identification and subtyping of Ureaplasma parvum and Ureaplasma urealyticum using PCR-based assays,” Journal of Clinical Microbiology, vol. 38, no. 3, pp. 1175–1179, 2000.
[14]  T. Baracaldo, M. Foltzer, R. Patel, and P. Bourbeau, “Empyema caused by Mycoplasma salivarium,” Journal of Clinical Microbiology, vol. 50, no. 5, pp. 1805–1806, 2012.
[15]  C. J. McIver, N. Rismanto, C. Smith et al., “Multiplex PCR testing detection of higher-than-expected rates of cervical Mycoplasma, Ureaplasma, and Trichomonas and viral agent infections in sexually active australian women,” Journal of Clinical Microbiology, vol. 47, no. 5, pp. 1358–1363, 2009.
[16]  Z. Samra, S. Rosenberg, and L. Madar-Shapiro, “Direct simultaneous detection of 6 sexually transmitted pathogens from clinical specimens by multiplex polymerase chain reaction and auto-capillary electrophoresis,” Diagnostic Microbiology and Infectious Disease, vol. 70, no. 1, pp. 17–21, 2011.
[17]  M. L. McKechnie, R. J. Hillman, R. Jones et al., “The prevalence of urogenital micro-organisms detected by a multiplex PCR-reverse line blot assay in women attending three sexual health clinics in Sydney, Australia,” Journal of Medical Microbiology, vol. 60, no. 7, pp. 1010–1016, 2011.
[18]  Y. A. Barykova LD, M. M. Shmarov, A. Z. Vinarov et al., “Association of Mycoplasma hominis infection with prostate cancer,” Oncotarget, vol. 2, no. 4, pp. 289–297, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133